Research ResourcesIMMUNODEFICIENCY

Characterization of T and B cell repertoire diversity in patients with RAG deficiency

+ See all authors and affiliations

Science Immunology  16 Dec 2016:
Vol. 1, Issue 6, eaah6109
DOI: 10.1126/sciimmunol.aah6109

You are currently viewing the abstract.

View Full Text

Taking SCID genetics to the clinic

Mutations that lead to deficiencies in the recombination-activating genes RAG1 and RAG2 result in a spectrum of immunodeficiencies ranging from loss of T and/or B cell repertoire diversity to a complete lack of T and B cells—severe combined immunodeficiency (SCID). Here, Lee et al. perform next-generation B and T cell repertoire sequencing on 12 patients with RAG mutations who have immunodeficiencies of varying severity. They found that the level of repertoire skewing was associated with the severity of disease and that specific repertoire deficiencies were associated with particular phenotypes. These data support a genotype-phenotype connection for primary immunodeficiencies.

Abstract

Recombination-activating genes 1 and 2 (RAG1 and RAG2) play a critical role in T and B cell development by initiating the recombination process that controls the expression of T cell receptor (TCR) and immunoglobulin genes. Mutations in the RAG1 and RAG2 genes in humans cause a broad spectrum of phenotypes, including severe combined immunodeficiency (SCID) with lack of T and B cells, Omenn syndrome, leaky SCID, and combined immunodeficiency with granulomas or autoimmunity (CID-G/AI). Using next-generation sequencing, we analyzed the TCR and B cell receptor (BCR) repertoire in 12 patients with RAG mutations presenting with Omenn syndrome (n = 5), leaky SCID (n = 3), or CID-G/AI (n = 4). Restriction of repertoire diversity skewed usage of variable (V), diversity (D), and joining (J) segment genes, and abnormalities of CDR3 length distribution were progressively more prominent in patients with a more severe phenotype. Skewed usage of V, D, and J segment genes was present also within unique sequences, indicating a primary restriction of repertoire. Patients with Omenn syndrome had a high proportion of class-switched immunoglobulin heavy chain transcripts and increased somatic hypermutation rate, suggesting in vivo activation of these B cells. These data provide a framework to better understand the phenotypic heterogeneity of RAG deficiency.

View Full Text