Research ArticleDENDRITIC CELLS

Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment

See allHide authors and affiliations

Science Immunology  16 Dec 2016:
Vol. 1, Issue 6, eaai7677
DOI: 10.1126/sciimmunol.aai7677

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Dendritic cell branches

Dendritic cell (DC) subsets have been well studied in mice; however, the relative contribution of ontogeny and tissue microenvironment to DC function in humans is less clear. Now, Heidkamp et al. perform phenotypic and transcriptional profiling of three DC subtypes in different human tissues from a large number of individuals. They find that DC subpopulations in more lympho-hemaotopoietic organs (spleen, thymus, and blood) are more strongly influenced by ontogeny, whereas those from lung and skin may be influenced by the issue microenvironment. The data collected here provide an in depth look at the transcriptional profile of dendritic cell subsets in humans and inform our understanding of human DC biology.

Abstract

In mice, conventional and plasmacytoid dendritic cells (DCs) derive from separate hematopoietic precursors before they migrate to peripheral tissues. Moreover, two classes of conventional DCs (cDC1 and cDC2 DCs) and one class of plasmacytoid DCs (pDCs) have been shown to be transcriptionally and functionally distinct entities. In humans, these three DC subtypes can be identified using the cell surface markers CD1c (cDC2), CD141 (cDC1), and CD303 (pDCs), albeit it remains elusive whether DC functionality is mainly determined by ontogeny or the tissue microenvironment. By phenotypic and transcriptional profiling of these three DC subtypes in different human tissues derived from a large number of human individuals, we demonstrate that DC subpopulations in organs of the lymphohematopoietic system (spleen, thymus, and blood) are strongly defined by ontogeny rather than by signals from the microenvironment. In contrast, DC subsets derived from human lung or skin differed substantially, strongly arguing that DCs react toward modulatory signals from tissue microenvironments. Collectively, the data obtained in this study may serve as a major resource to guide further studies into human DC biology during homeostasis and inflammation.

View Full Text