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data analyzed here were based on PBMCs and whole blood and thus 
reflect a mix of cell types. We used deconvolution analysis to con­
firm that the signatures we identified did not simply reflect variations 
in frequencies of major cell subsets. However, because of sample size 
limitations, the adjustment included only four major cell subsets 
(B cells, monocytes, and CD4 and CD8 T cells) and did not include 
potential effects conferred by cell subsets that lie deeper in the 
hematopoietic hierarchy.

In summary, we have integrated data from the HIPC and the CHI 
to conduct a multicohort analysis to identify baseline (i.e., before vac­
cination) predictive transcriptional signatures of influenza vaccina­
tion responses, and the effects of these signatures were inversely 
correlated between young and older individuals. In addition to 
potentially enabling the prediction of antibody responses before vac­
cination in the clinic and in vaccine trials, these results provide hy­
potheses on potential biological mechanisms underlying successful 
influenza vaccination responses and how these mechanisms could 
change with age. More broadly, the discovery of baseline signatures 
offers the possibility of modulating an individual’s immune state be­
fore vaccination to improve the resulting antibody response. All of the 
data used in this study are available from ImmPort and ImmuneSpace.

METHODS
Influenza vaccination response cohorts and data
All participants received injectable trivalent influenza vaccine. Raw and 
processed data are available from ImmuneSpace (https://immunespace.
org), and data can also be obtained from ImmPort (http://immport.org). 
The discovery cohorts are identified by ImmPort study numbers SDY63, 
SDY400, SDY404, and SDY212. The validation cohorts are SDY80 
and SDY67. To match the age composition of the discovery cohorts, 
we only included individuals below 35 or above 60 years of age in the 
analysis of the validation cohorts. The SDY212 data set was derived 
from whole blood, whereas all others were derived from PBMC sam­
ples. Transcriptional profiling of SDY63, SDY404, and SDY400 used 
HumanHT-12 V4.0 expression beadchip (Illumina), whereas SDY212 
was performed on HumanHT-12 V3.0 expression beadchip (Illumi­
na). Illumina data from the above four studies were log-transformed 
and quantile-normalized using the Lumi package in R. The microarray 
data from SDY80 was run on HuGene-1_0-st array (Affymetrix) and 
normalized by robust multichip average. SDY67 was an RNA-seq study 
run on HiSeq 2000 (Illumina), and read count data were summarized by 
gene and normalized using DESeq (64). The transcriptional profiling data 
from SDY67 were obtained in two experimental batches, and only data 
from the larger batch were used in this study.

Identification of low, moderate, and high  
vaccine responders
We adopted the adjMFC metric used in a previous systems biology 
study of influenza vaccination [SDY80; see the extended experimental 
procedure of Tsang et al. (7) for details]. This metric was adopted 
for three main reasons. First, this measure mitigates the effect of pre­
vaccination serology on the predictive signatures. This is important 
given that preexisting titers against influenza are highly prevalent, 
exhibit substantial variability across individuals, and are observed 
to correlate in a nonlinear manner with the fold change in titers after 
vaccination (Fig. 3A) (11). The adjMFC metric captures the response 
variability among individuals with similar preexisting titers and thus 
“decorrelates” the initial titers from the response based on fold change 

to enable the identification of predictive signatures independent of 
initial serology (7). Second, given that none of the gene expression 
measurements we assessed reflected specificity to any of the indi­
vidual influenza strains that comprised the vaccines, using the max­
imum response across all viral strains, as captured by the adjMFC 
metric, is more appropriate and can potentially provide better sen­
sitivity, compared with using the response to each strain individually 
(7, 12). Last, the adjMFC metric reflects the relative response across 
individuals instead of treating the titer values and their fold changes 
as absolute measurements and thus can potentially mitigate the ef­
fect of noise in titer measurements (25).

Here, we provide a concise description of how adjMFC was com­
puted. Given that the vaccines used in our cohorts contained three 
to four strains (usually three, but in the 2009 season, the seasonal strains 
were supplemented with an additional pandemic H1N1 strain), we 
quantitated both preexisting (baseline) and response serology by 
computing the maximum across all strains. Titer calculations were 
performed separately for each cohort and age group (young and older; 
see above). Titers were measured at days 0 and 28 by HAI for all 
studies except SDY80, which used virus neutralization assay (VNA) 
at days 0 and 70. A titer of half the first dilution was assigned to sam­
ples in which the first dilution was negative except for SDY404, for 
which the first dilution (1:8) was reported. In all studies, the largest 
dilution was reported if the largest dilution was positive. To help 
ensure that baseline titers and response fold changes of individual 
strains were comparable, so that the maximum is meaningful, we 
standardized titers for each strain at baseline (day 0) by subtracting 
the median and then scaling by the SD. We then defined the base­
line (relative) titer for each individual as the maximum across stan­
dardized baseline values for all strains. Similarly, we used the same 
approach to standardize the titer response fold change (usually day 
28 over day 0) and called these the MFC. In addition, we applied the 
inverse normal transformation to the MFC values to avoid extreme 
skews in the distribution. We next plotted baseline and MFC, and as 
previously observed, we saw a strong nonlinear inverse correlation 
between them in all of our data sets. To compute adjMFC (i.e., remov­
ing the nonlinear correlations), we binned the individuals based on 
their baseline titer so that the correlation between baseline and re­
sponse titers within each bin was not statistically significant, and at 
the same time, we tried to keep the number of bins as low as possible 
so that each bin would have a reasonable number of individuals for 
decorrelation. Typically, two to three bins were used. In some of our 
cohorts, there were a few outlier individuals with extremely high base­
line titers and correspondingly small response fold changes; they were 
removed from further analysis. For each bin, we computed the decor­
related responses (adjMFC) by standardizing the MFC values within 
each bin, that is, subtracting the median and scaling by the SD. Last, 
individuals within each cohort were defined as low, moderate, and 
high responders using percentile cutoffs (7). To accommodate the 
relatively small number of individuals in some of the cohorts, we 
defined low, moderate, and high responders as those whose adjMFC 
was lower than the 30th percentile value, between the 30th and the 
70th percentile values, and above the 70th percentile value, respectively. 
After applying the decorrelation procedure, we also performed a num­
ber of diagnostic checks to ensure that our approach had achieved 
the desired effects. Specifically, we confirmed the following: (i) The 
correlation between baseline titer and the adjMFC was removed on 
the basis of the Spearman rank correlation; (ii) at the individual strain 
level, the correlation between the baseline titer and the response fold 
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change was statistically insignificant (i.e., before aggregation of the 
individual titer per strain via computing the maximum); (iii) the iden­
tity of the strain that contributed to the baseline (or response fold 
change) maximum did not correlate with adjMFC. In all of the above 
checks, two variables were considered not correlated if the Spearman 
correlation P value was greater than 0.1.

Integrated multicohort analysis
Gene expression data sets were analyzed using a computational 
framework for integrated multicohort analysis (17, 20, 23). Briefly, 
for each gene expression data set used as a discovery cohort, we labeled 
samples either as a case or as a control and then computed a Hedges’ 
g effect size for each gene in each data set. The individual effect sizes 
were then integrated into a single summary effect size per gene across 
all discovery data sets. Significant genes were then identified using 
z statistics, and P values were corrected for multiple hypothesis testing 
using Benjamini-Hochberg FDR correction. We generated a response 
score from signature genes by computing the geometric mean of the 
expression of the individual genes within a given individual. We then 
estimated the response score accuracy in discriminating high and low 
responders by generating a receiver operating characteristic (ROC) 
curve and computing the AUC. A t test was carried out to compare 
response scores between low and high responders at various post­
vaccination time points in the validation cohort (SDY80).

Gene module analysis
The set of 346 BTMs were obtained from (27). Gene module activity 
was calculated using QuSAGE version 2.0.0 (24). The activity of each 
gene module (comparing high vaccine responders versus lower vac­
cine responders) was first quantified independently for each of the 
discovery cohorts using QuSAGE to produce a PDF. A meta-analysis 
was then carried out by combining the activity PDFs generated for 
each of the discovery cohorts into a single PDF using numerical con­
volution. The sizes of each cohort were used as weight factors during 
numeric convolution. P values for each gene module were calculated 
by testing whether the activity was different from zero using a two-sided 
test. Gene modules associated with influenza vaccination response 
were detected by P ≤ 0.01 and FDR ≤ 0.3. To identify related gene 
modules from KEGG (28) and Reactome (29) and the modules de­
fined in Obermoser et al. (16), we used regular expressions to extract 
gene modules containing the keywords “inflamm,” “b[_]*cell,” and 
“platelet.”

Correction for cell proportion variations
Flow cytometry measurements for the validation cohort (SDY80) 
were obtained from http://chi.nhlbi.nih.gov/DATA/chi/09-H-0239/
flow. The transcriptional profiles associated with this cohort were 
then adjusted for variation in four major cell subset proportions 
(B cells, monocytes, and CD4 and CD8 T cells) using the flow cytometry 
data expressed as percentage of total PBMCs. For each gene sepa­
rately, we fit a linear model with intercept (using the R function lm) 
on the normalized non–log-transformed data, including proportions 
as covariates. The complete adjusted transcriptional profiling data 
were then computed as the sum of the intercept coefficient and the 
residuals, and back log2–transformed.

Availability of data in ImmPort and ImmuneSpace
The data used in this study were generated by HIPC and CHI, a 
National Institutes of Health intramural affiliate of HIPC. The HIPC 

program is a major collaborative effort that is generating large amounts 
of human immune profiling data—including high-dimensional data—
to characterize the status of the immune system in diverse popula­
tions under both normal conditions and in response to stimuli (e.g., 
vaccination). Data management is an integral part of the program, 
and to address the issues involved with integrating and disseminating 
such data, HIPC has developed ImmuneSpace (https://immunespace.
org), a high-quality public web interface to HIPC data. ImmuneSpace 
facilitates retrieval, exploration, and comparison of data across in­
dependent studies. To support the wide range of immunological 
experiments being carried out, HIPC is taking advantage of the con­
siderable infrastructure already developed as part of the National 
Institute of Allergy and Infectious Diseases (NIAID) Immunology 
Database and Analysis Portal (ImmPort) system (https://immport.
niaid.nih.gov), which serves as a repository of data generated by in­
vestigators funded by the NIAID Division of Allergy, Immunology, 
and Transplantation. Data from ImmPort are automatically loaded 
into ImmuneSpace and joined with basic metadata (e.g., cohort 
membership and treatment information) to facilitate data explora­
tion, visualization, and analyses. ImmuneSpace also provides addi­
tional standardization to facilitate data integration. For example, gene 
expression data in ImmuneSpace are preprocessed using standardized 
pipelines ensuring that the same normalization is used, gene names 
are consistent, etc. ImmuneSpace also provides a “Data Finder” inter­
face for filtering participants across assays and studies based on a set 
of predefined study and assay variables, making it easy to browse and 
search extremely large combined data sets from dozens of studies and 
tens of thousands of participants. An R package (ImmuneSpaceR) is 
also available to facilitate programmatic access to data. Using these 
interfaces, the studies included in the analysis presented here can 
easily be identified, combined, and explored to gain further insights. 
For details, please see https://immunespace.org/IS1.url.

SUPPLEMENTARY MATERIALS
immunology.sciencemag.org/cgi/content/full/2/14/eaal4656/DC1
Fig. S1. Distribution of low (blue), moderate (purple), and high (red) responders in the 
discovery and validation cohorts.
Fig. S2. Genes that predict vaccination response in young individuals when comparing 
moderate responders versus low responders.
Fig. S3. Performance of genes significantly different in young high versus low responders.
Fig. S4. Baseline activity of the platelet activation (III) (M42) gene module is associated with 
influenza vaccination responses in young individuals.
Fig. S5. Baseline activity of the inflammatory response (M33) gene module is associated with 
influenza vaccination responses in young individuals.
Fig. S6. Validation of GRB2, ACTB, MVP, DPP7, ARPC4, PLEKHB2, and ARRB1 as predictors of 
influenza vaccination response in the validation cohort (SDY80) after correction for cell subset 
proportions.
Table S1. Characteristics of the discovery and validation cohorts for young and older 
participants.
Table S2. Gene module activities that are associated with vaccination response in the 
discovery cohorts for older participants.
Table S3. Validation of gene modules that are associated with vaccination response in KEGG 
and Reactome and the modules defined in Obermoser et al. for young participants.
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vaccination, as well as provide insights into the distinct mechanism governing immune responses in young and older 
and had an inverse correlation in older individuals. These data may help to predict antibody response to influenza
magnitude of antibody response in an independent cohort. However, these signatures were specific to young individuals 
signatures of influenza vaccination responses. They validated nine genes and three gene cohorts that associated with
spanning distinct geographical locations and vaccination seasons and identify prevaccination predictive transcriptional 

 perform a systems-level analysis on multiple influenza vaccination cohortset al.individuals to seasonal vaccines. Avey 
Development of a broad flu vaccine has been hampered by lack of clear insight into protective mechanisms across
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