Interleukin-10 from CD4⁺ follicular regulatory T cells promotes the germinal center response

Brian J. Laidlaw, † Yisi Lu, † Robert A. Amezquita, Jason S. Weinstein, Jason A. Vander Heiden, Namita T. Gupta, Steven H. Kleinstein, Susan M. Kaech, Joe Craft

CD4⁺ follicular regulatory T (Tfr) cells suppress B cell responses through modulation of follicular helper T (Tfh) cells and germinal center (GC) development. We found that Tfr cells can also promote the GC response through provision of interleukin-10 (IL-10) after acute infection with lymphocytic choriomeningitis virus (LCMV). Sensing of IL-10 by B cells was necessary for optimal development of the GC response. GC B cells formed in the absence of Treg cells-derived IL-10 displayed an altered dark zone state and decreased expression of the transcription factor Forkhead box protein 1 (FOXO1). IL-10 promoted nuclear translocation of FOXO1 in activated B cells. These data indicate that Tfr cells play a multifaceted role in the fine-tuning of the GC response and identify IL-10 as an important mediator by which Tfr cells support the GC reaction.

INTRODUCTION
The germinal center (GC) response is essential for the production of memory B cells and class-switched, long-lived plasma cells that produce high-affinity antibodies (1). Understanding the mechanisms regulating the GC response is of interest because of the potential to harness this knowledge to bolster or, in the cases of autoimmunity and B cell lymphomas, restrain the GC response (2). Follicular helper T (Tfh) cells are a specialized subset of effector CD4⁺ T cells that express the transcription factors Bcl6 and A2il2, and the B cell follicular-homing chemokine receptor CXCR5, and reside within the GC (3, 4). Tfh cells regulate the GC response through secretion of cytokines [e.g., interleukin-21 (IL-21), IL-4, and interferon-γ (IFN-γ)] and expression of surface ligands such as CD40L that signal to GC B cells and promote their maturation (5). Competition for Tfh cell help regulates B cell selection within the GC because high-affinity B cells preferentially interact with Tfh cells and receive signals promoting the further proliferation and somatic hypermutation of their immunoglobulin (Ig) genes (6, 7).

A subset of effector Foxp3⁺ regulatory CD4⁺ T (Treg) cells that express CXCR5 and Bcl6 was recently described (8–10). These cells, known as follicular regulatory T (Tfr) cells, originate from thymic-derived Foxp3⁺ cells or naive cells and reside within the follicles and GC in mice and humans, where they serve to modulate the magnitude and quality of the GC and Tfh cell responses (8–13). Tfr cells express the inhibitory co-receptor CTLA4, which is essential for their restraint of the GC response (14, 15). CTLA4 suppresses the latter response by modulating B cell expression of B7-2 (CD86) outside GCs (15) or by acting on GC B cells, either dependently or independently of B7-1 (CD80) and B7-2 (14–16). It may also function to control Tfh cell generation directly by altering CD28 engagement (17). Although Tfr cells deficient in CTLA4 have impaired suppressive ability in vivo, it is likely that both Tfr cells and follicular nonresident Treg cells act through CTLA4 to restrain the GC response (14, 15).

Tfr cells may also modulate the GC response through pathways independent of CTLA4. Treg cells regulate immune cells through control of IL-2 availability, surface expression of ectoenzymes (CD39 and CD73), inhibitory receptors (e.g., CTLA4 and Lag3), and secretion of cytokines such as IL-10, IL-35, and TGF-β (transforming growth factor-β) (18). During influenza infection, Treg cells indirectly promote Tfh cell differentiation and, subsequently, the GC response by limiting T cell exposure to IL-2 (19). IL-2 signaling through signal transducer and activator of transcription 5 (STAT5) and via Akt and mechanistic target of rapamycin (mTOR) can impair Tfh cell differentiation by suppressing Bcl6 expression and up-regulating that of Blimp1 (20). Whether Tfr cells may directly regulate the GC response through similar mechanisms remains ill defined.

Treg cell production of IL-10 is essential for the regulation of inflammation at environmental interfaces, such as the colon and lung, and can enhance the development of functional memory CD8⁺ T cells during acute lymphocytic choriomeningitis virus (LCMV) infection through suppression of inflammation in the spleen (21–23). IL-10 can also promote B cell proliferation, survival, and differentiation into antibody-secreting plasma cells (24–28), although it is not known whether Tfr cell-derived IL-10 can modulate the GC response. Here, we demonstrate that it does modulate the GC response during acute viral infection. These findings reveal that Tfr cells play a multifaceted role in the fine-tuning of the GC response and are capable of promoting or suppressing the GC response depending on the signals provided and the context in which these signals are received.

RESULTS

Treg cell-derived IL-10 promotes B cell differentiation and GC development
To examine IL-10 production by Tfr cells, we infected 10B1T IL-10 reporter mice acutely with the Armstrong strain of LCMV and assessed Tfr cell phenotype and kinetics. These reporter mice have a bacterial artificial chromosome transgene containing the Il10 gene locus, with the Thy1.1 complementary DNA (containing a stop codon) replacing the endogenous coding segment of exon 1 of the Il10 locus such that
cells transcribing its mRNA express Thy1.1 on their cell surface (29). Our previous work validated that Thy1.1+ cells produce IL-10 during LCMV infection (30). Although TFC cell numbers initially declined after LCMV infection, their number increased from day 5 onward, mirroring the kinetics of Tfh and pre-TFC cells and GC B cells [Fig. 1A, gated as in fig. S1, A and B, and as previously described (31–35)]. The ratio of TFC cells to Tfh cells or GC B cells peaked at day 5 after infection and progressively declined at days 8 and 12 as the increase in TFC cell and GC B cell numbers outpaced that of Tfh cells (Fig. 1B) (9, 10).

There was an increased percentage of Thy1.1+ cells within the TFC cell population relative to non-TFC Treg cells at days 5 and 8 after infection, suggesting that IL-10 secretion may be a mechanism by which TFC cells regulate the emerging GC response within the follicle (Fig. 1C). Detection of Thy1.1+ Treg cells within the GC by immunofluorescence was impeded because of technical complications related to the disrupted splenic architecture at days 5 and 8 after infection and the diminishment of Thy1.1 expression. Only a small percentage of TFC cells or GC B cells were competent to express IL-10, with their percentages declining over time (fig. S1C). They also made less of this cytokine on a per-cell basis relative to Tfh and non-TFC Treg cells, suggesting that these cells, in comparison with Tfh or Treg cells, are not an important source of IL-10 for the GC response.

To evaluate the importance of Treg cell–derived IL-10 in the GC response, we generated mice that specifically deleted Il10-expressing Treg cells, as previously described (34–31). IgDlo and of those cells with a GC phenotype (GL7+CD95+) emerged over time in mice in which Treg cells lacked Il10 expression, with this difference peaking at day 15 after infection (Fig. 2A and fig. S3A). These mutant mice also displayed reduced GC size as determined by confocal imaging of splenic sections (Fig. 2B). We found that mice lacking Treg cell–derived IL-10 had a reduced percentage and number of plasmablasts (CD138+B220int cells) compared with their IL-10 intact counterparts, albeit a similar number of cells with a GC-dependent memory B cell phenotype (B220IgDsGL7CD38CD95cells) (Fig. 2C) (36, 37). They also had reduced serum titers of LCMV-specific IgG2a and IgG1 (Fig. 2D), with a similar number of LCMV-specific memory B cells (Fig. 2E). No defects in GC B cell or plasmablast numbers were evident in mice immunized with NP-OVA [(4-hydroxy-3-nitrophenyl)acetyl-ovalbumin] in complete Freund’s adjuvant (fig. S3B). There were also no apparent defects in GC B cell or plasmablast numbers in LCMV-infected IL-10−/− mice or in mice treated with an anti–IL-10 antibody, suggesting that IL-10 production by different cell types may play opposing roles in the regulation of the GC response (fig. S4, A and B) (38).

Together, these data indicate that IL-10 specifically produced by Treg cells is important in promoting plasmablast differentiation and the development of the GC after viral infection.

TFC cell–derived IL-10 promotes the GC response

These findings did not distinguish between the roles of TFC cell–derived IL-10 and IL-10 produced by Bcl6+ Treg cells in regulating the GC response. Follicular nonresident Treg cells can modulate the GC response as early as day 3 after immunization and likely serve as precursors for TFC cells (14). To discriminate between these possibilities, mixed bone marrow chimeras (mMBCs) were generated, in which Il10 was specifically ablated in Bcl6-expressing Treg cells via generation of 50:50 Il10Δ/Foxp3-Cre:Bcl6Δ/Foxp3-Cre mice and control 50:50 Il10Δ/Foxp3-Cre:Bcl6Δ/Foxp3-Cre chimera mice (Fig. 3A) (12). In the absence of TFC cell–derived IL-10, there was a significantly reduced percentage of IgDlo B cells at day 15 after LCMV infection and reduced percentages of GC B cells and plasmablasts (CD138+B220int) in comparison with control chimeras. The importance of TFC cell–derived IL-10 was further tested using

Fig. 1. TFC cells robustly secrete IL-10 after acute viral infection. Analysis of the Treg cell response after LCMV infection in IL-10 reporter (10B1T Thy1.1) mice. (A) Quantification of the number of TFC cells, non-TFC Treg cells, pre-TFC cells, Tfh cells, and GC B cells at days 0, 5, 8, and 12 after infection. Populations are defined as follows: TFC cells, CD4+Ly6C−PSGL1hiCXCR5+PD1+Foxp3−; non-TFC Treg cells, CD4+CXCR5−PD1+Foxp3−; pre-TFC cells, CD4+CD44+Ly6C−PSGL1hiCXCR5−PD1+Foxp3−; and GC B cells, B220IgD−GL7−CD95+. (B) Quantification of the ratio of TFC cells to Tfh cells or GC B cells at days 0, 5, 8, and 12 after infection. (C) Representative plot of IL-10 expression (assessed as Thy1.1) by TFC cells (left) and non-TFC Treg cells (middle) from mice as described in (A). Right: Frequency of Thy1.1+ cells in TFC cells and non-TFC Treg cells at days 0, 5, 8, and 12 after LCMV Armstrong infection. Statistical analyses were performed using unpaired two-tailed Student’s t test (*P < 0.05; **P < 0.01; ***P < 0.001). Data are from two experiments representative of four experiments with three to six mice per time point after LCMV Armstrong infection.
Fig. 2. Regulatory CD4+ T cell–derived IL-10 is important for B cell differentiation and the GC response. Analysis of the B cell response in Il10f/f and Il10f/f Foxp3-Cre mice 15 days after LCMV infection. (A) Top: Representative plots of the B cell responses in Il10f/f or Il10f/f Foxp3-Cre mice. Bottom: Frequency and number of cells as indicated by the gates shown above. (B) Representative confocal images of the GC from Il10f/f or Il10f/f Foxp3-Cre mice. Right: GC sizes as measured by ImageJ. The sections were taken from four mice of each genotype. Scale bar, 100 μm. (C) Left: Frequency of plasmablasts and memory B cells defined by the expression of surface markers. Right: Absolute numbers of plasma cells and memory B cells. (D) Enzyme-linked immunosorbent assay quantification of LCMV-specific IgG2a and IgG1 antibody levels, indicated by arbitrary units (a.u.). All the analyses of the GC response were performed 15 days after acute LCMV Armstrong infection. n.s., not significant. (E) Enzyme-linked immunospot quantification of the number of LCMV-specific IgG2a and IgG1 memory B cells. All the analyses of the GC response were performed 60 days after acute LCMV Armstrong infection and from four experiments with three to five mice per group carried out 12 days after LCMV Armstrong infection. Data for (D) are pooled from two experiments carried out 12 or 15 days after infection. Data for (E) are pooled from two experiments with five to seven mice per group carried out 60 days after infection.
another approach in which mBMCs were generated using SAP-deficient (SAP−/−) mice in place of Bcl6−/−Foxp3-Cre (Fig. 3B). SAP is required for Treg cell differentiation (8, 9). Again, we found that loss of Treg cell–derived IL-10 resulted in decreased percentages of IgDlo B cells, GC B cells, and plasmablasts. These data indicate that Treg cell–derived IL-10 supports B cell differentiation and the GC response.

IL-10 signals via B cells to promote the GC response

There are multiple pathways by which Treg cell–derived IL-10 could modulate the GC response, including acting directly on B cells or indirectly through Tfh cells or dendritic cells (DCs) (39, 40). To assess which cell populations were responsive to IL-10 signaling, we stimulated splenocytes from LCMV-infected mice with IL-10 and determined phospho-STAT3 (pSTAT3) in GC B cells, DCs, and Tfh cells. Although both GC B cells and DCs displayed robust pSTAT3 expression relative to unstimulated controls, Tfh cells were poorly responsive, suggesting that IL-10 does not act directly upon them to regulate the GC response (Fig. 4A). Consistent with this finding, we determined that the LCMV-specific CD4+ T cell response against the immunodominant GPe6–77 epitope was similar between control mice and those lacking Treg cell–derived IL-10 at day 8 after infection (fig. S5A). The LCMV-specific T helper 1 (Th1) (CD44hiPSGL1hiLy6C−) and Tfh (CD44hiPSGL1hiLy6C+CXCR5+PD1+) responses, as well as the percentages of Treg (Foxp3+CD4+) and Tfh cells, were also similar between the two groups (fig. S5B) (31).

To identify the cell population that IL-10 was acting upon to regulate the GC response, we generated mice in which the Il10ra gene was deleted specifically on B cells, DCs, or T cells (22). The B cell response in these mice was then assessed at day 15 after LCMV infection. Although the B cell response in mice in which T cells could not sense IL-10 was comparable with control mice, Il10ra−/−Cd19−/− mice displayed a significant decrease in the percentages of activated and GC B cells compared with Il10ra+/+ controls (Fig. 4B). Il10ra−/−Cd11c−/− mice also had a reduced percentage of IgDlo B cells but an equivalent fraction of these cells with a GC phenotype, indicating that although IL-10 may partially act through DCs to promote B cell activation, this pathway does not account for the defect in the GC response (Fig. 4B).

Together, these findings suggest that Treg cell–derived IL-10 can act directly on B cells to promote their activation and differentiation into GC B cells.

Treg cell–derived IL-10 drives GC B cells to adopt a dark zone phenotype

To help understand how Treg cell–derived IL-10 influenced the fate of GC B cells, we performed RNA sequencing (RNA-seq) analysis to evaluate the gene expression profile of GC B cells isolated from Il10−/−Foxp3-Cre and control Il10+/+ mice at day 12 after LCMV infection. There were 138 differentially expressed genes (DEGs) in GC B cells between the two groups, with 84 genes up-regulated and 54 genes down-regulated in the Il10−/−Foxp3-Cre mice compared with controls (Padj < 0.1) (Fig. 5A and fig. S6A). Among the DEGs were a number of genes used to distinguish dark zone and light zone GC B cells, including Cxcr4 and Cd83 (6, 41). Gene set enrichment analysis (GSEA) was used to detect genome-wide changes and identified a significant enrichment for a light zone GC B cell signature in GC B cells isolated from Il10−/−Foxp3-Cre mice (Fig. 5, B and C, and fig. S6B). The dark zone is the proliferative compartment of the GC and the predominant site of Ig gene somatic hypermutation, in contrast to the light zone where GC B cells have a largely nonproliferative state and compete for the T cell help necessary to induce dark zone reentry (42–44). GC B cells isolated from Il10−/−Foxp3-Cre compared with control mice were also highly impaired in gene sets associated with translational activity (Fig. 5C). Together, these findings suggest that Treg cell–derived IL-10 promotes GC B cells to adopt a dark zone phenotype.

![Fig. 3. Treg cell–derived IL-10 is important for B cell differentiation and the GC response.](http://immunology.sciencemag.org/) Left: Schematic for the experiment. Right: Data are pooled from two experiments with four to five mice per group carried out 15 days after LCMV Armstrong infection. Statistical analyses were performed using unpaired two-tailed Student’s t test (*P < 0.05; **P < 0.01; ***P < 0.001).

seven mice per group carried out 15 days after LCMV Armstrong infection. Mice for the control
pendent crosses used to generate the experimental groups.

A

GC B cells

Dendritic cells

Tfh cells

pSTAT3

IL-10

No stim

B

Il10α−/−Cdr19-Cre

Il10−/−Cdr19-Cre

Il10−/−Cdr11c-Cre

Il10−/−Cdr4-Cre

Fig. 4. IL-10 acts on B cells to regulate the GC response. (A) GC B cells and DCs, but not T reg cells, are responsive to IL-10. Analysis of IL-10 responsiveness in GC B cells, DCs (CD11c+MHCI), and Tfh cells. Splenocytes isolated from mice at day 12 after LCMV infection were stimulated for 30 min with IL-10, and pSTAT3 levels were determined. Data are from one experiment representative of three experiments with four mice per group. (B) Analysis of the B cell response in Il10α−/−, Il10−/−Cdr19-Cre, Il10−/−Cdr11c-Cre, and Il10−/−Cdr4-Cre mice 15 days after LCMV infection. Top: Representative plots of B cell response. Bottom: Quantification of B cell response shown above. Statistical analyses were performed using unpaired two-tailed Student's t test (*P < 0.05; **P < 0.01). Data are from one experiment representative of two to three experiments with three to seven mice per group carried out 15 days after LCMV Armstrong infection. Mice for the control Il10α−/− group were pooled from littermate controls produced from the independent crosses used to generate the experimental groups.

To more directly test this hypothesis, we determined the dark zone and light zone phenotypes of GC B cells from control mice and those lacking T reg cell–derived IL-10. In agreement with our RNA-seq data, there was a small but significant decrease in the percentage of dark zone GC B cells and an increase in that of light zone GC B cells in GC B cells from Il10−/−Foxp3-Cre mice (Fig. 5D). Aligning with previous results, we did not detect a difference in GC B cell proliferation or survival between the groups (fig. S7) (43, 44). These data support a model in which T reg cell–derived IL-10 acts on light zone GC B cells to skew them toward a dark zone phenotype. These data do not discount the possibility that T reg cell–derived IL-10 acts on B cells during the early stages of the GC response to influence their ability to later adopt a dark zone phenotype.

T reg cell–derived IL-10 promotes dark zone phenotype through induction of nuclear FOXO1

We next analyzed our RNA-seq data using Integrated Pathway Analysis (IPA; Ingenuity Systems, www.ingenuity.com). This analysis revealed that eukaryotic initiation factor 2 (eIF2) signaling was the most significantly dysregulated pathway in Il10−/−Foxp3-Cre mice compared...
with controls (Fig. 6A), in agreement with our GSEA indicating impaired translation. mTOR signaling was also significantly up-regulated (Fig. 6A). Analysis of potential upstream regulators identified impaired Forkhead box protein 1 (FOXO1) and enhanced RICTOR (rapamycin-insensitive companion of mTOR) signaling, an mTOR signaling component, as the most significant regulators of the gene signature (Fig. 6B). The transcription factor FOXO1 and PI3K (phosphatidylinositol 3-kinase) signaling, an inducer of mTOR, execute opposing roles in the regulation of the dark zone and light zone GC B cell fate, with ablation of FOXO1 or induction of PI3K activity resulting in a loss of the dark zone phenotype cells (42, 43, 45). Thus, regulation of FOXO1 activity by T_{reg} cell–derived IL-10 could modulate the dark zone phenotype of GC B cells. To test this hypothesis, we determined total FOXO1 expression at day 15 after LCMV infection in GC B cells from I10^floX/Foxp3-Cre mice and identified decreased protein levels relative to controls (Fig. 6C). This decrease was evident in both dark zone and light zone GC B cells (Fig. S8A). We also found that GC B cells from I10^floX/Foxp3-Cre mice displayed increased pS6 and pAkt expression (fig. S8B). Collectively, these data indicated that T_{reg} cell–derived IL-10 is necessary for maximal FOXO1 induction in GC B cells.

We next asked whether IL-10 promotes FOXO1 nuclear translocation in activated B cells. Active FOXO1 localizes to the nucleus where it can instruct a specific gene program (46). To mirror the in vivo
context in which B cells are exposed to IL-10, cells were isolated from mice at day 5 after LCMV infection and cultured with or without IL-10. Day 5 coincides with the peak expression of IL-10 by Tfr cells, a major source of IL-10 within the inner follicle (Fig. 1C and fig. S1C), and allowed us to assess FOXO1 nuclear translocation in cells that have not yet had prolonged exposure to IL-10. Using Amnis ImageStream analysis, we observed an increase in the percentage of nuclear translocated FOXO1 in activated B cells (Fig. 6D). IL-10 did not induce nuclear translocation of FOXO1 in follicular B cells, despite robust pSTAT3 signaling (fig. S8C), suggesting that IL-10 acts in concert with other signals received by activated B cells, such as B cell receptor (BCR), costimulation, and cytokines, to promote FOXO1 activity.

In addition to regulating dark zone reentry, FOXO1 is also important in promoting Ig affinity maturation (42, 43). To assess affinity maturation, GC B cells from control Il10^{f/f} and experimental Il10^{f/f}Foxp3-Cre mice were sorted at day 15 after LCMV infection and a large number of the Ig heavy chain variable region (V_H) genes were cloned and sequenced using a pooled primer approach, as previously described (47). The overall mutation frequency in the complementarity-determining region (CDR) was similar between groups (Fig. 6E). However, we identified a reduction in the degree of positive selection within the CDR in the Il10^{f/f}Foxp3-Cre mice, which was absent in the framework region (FWR) (Fig. 6E). The trend was observed in two independent experiments but did not reach statistical significance because of the limitation of the number of clones obtained. We further examined the amino acid physicochemical properties of CDR3 because positively selected cells typically display reduction in these metrics (fig. S9) (48).

DISCUSSION

Understanding the signals regulating GC B cell differentiation is critical for the development of targeted therapies that can modulate GC output. Here, we describe a role for Tfr cells in promoting the GC response through local production of IL-10 during viral infection. IL-10–secreting T_{Treg} cells act on B cells to drive their differentiation into plasmablasts and GC B cells. Both IL-10 expression and the T_{Tfr}-to-GC B cell ratio peak at day 5 after infection, suggesting that Tfr cell–derived IL-10 may be predominantly acting early to drive B cell differentiation. T_{Tfr} cell–derived IL-10 promotes expression and activity of FOXO1, thereby facilitating adoption of a dark zone phenotype by GC B cells and potentially enhancing affinity maturation.
These results illustrate the complex role of T\(_f\) cells in the regulation of the GC response and the need to consider both the suppressive and stimulatory roles of T\(_{reg}\) cells in control of humoral immunity.

How do T\(_f\) cells balance their suppression and promotion of GC output? IL-10–competent T\(_f\) cells express high levels of CTLA4, so it is unlikely that IL-10–secreting and CTLA4-expressing T\(_f\) cells represent unique populations. One possible explanation is that suppression by T\(_f\) cells is reliant on cell contact (e.g., CTLA4–CD80/86 interactions).

In such a scenario, light zone GC B cells engaged in productive major histocompatibility complex (MHC)–peptide–T cell receptor (TCR) exchange with T\(_f\) cells would be less available for this type of interaction, thus allowing IL-10 secretion by nearby T\(_f\) cells to stimulate GC B cell differentiation and dark zone reentry. However, GC B cells not engaged with T\(_f\) cells would be available to interact with T\(_f\) cells, where the suppressive function of CTLA4 could dominate the stimulatory role of IL-10. In this manner, T\(_f\) cells could promote the continued differentiation of affinity-matured, antigen-bearing GC B cells while suppressing those cells with low antigen affinity. Alternatively, B cells engaged in productive interactions with T\(_f\) cells, including before GC formation, might be rendered more sensitive to IL-10 signaling (or less susceptible to inhibition by CTLA4), providing signals that initiate dark zone polarization of these cells or their growth advantage.

The finding that T\(_f\) cells restrict the outgrowth of non–antigen-specific GC B cells supports these models and suggests an important role for T\(_f\) cells in restraining the expansion of autoreactive GC B cells (9). It will be important for future work to more directly test these ideas and explore other mechanisms by which T\(_f\) cells may modulate the GC response.

Distinguishing between the function of T\(_f\) cells and follicular nonresident T\(_{reg}\) cells in modulating the GC response is critical. Ablation of CTLA4 expression on T\(_{reg}\) cells impairs CD86 expression on B cells before the formation of T\(_f\) cells, indicating that follicular nonresident T\(_{reg}\) cells influence the GC response (14). It is likely that there are multiple mechanisms by which T\(_{reg}\) cells could exert this effect, including regulation of T or B cell avidity and the activation state of DCs (22, 23, 49). Here, we found that depletion of T\(_f\) cells–derived IL-10 led to an impaired GC response. This finding does not rule out a contribution of IL-10–producing follicular nonresident T\(_{reg}\) cells on the regulation of the GC response. It also does not distinguish between the roles of T\(_f\) cells inside and outside of the GC, as well as those cells present within the follicle before GC development.

T\(_f\) cell–derived IL-10 likely contributes to the GC B cell response through multiple mechanisms. Our work reveals its promotion of FOXP1 expression, which is required for dark zone formation because of its essential role in gene program instruction, including the up-regulation of the chemokine receptor CXCRR4 required for GC B cell migration into the dark zone (42–45). However, although regulation of FOXP1 activity may explain the dysregulated dark zone phenotype and affinity maturation of GC B cells from mice lacking T\(_{reg}\) cells–derived IL-10, it does not explain the decrease in GC B cell number and output. GC B cell proliferation and somatic hypermutation typically occur in the dark zone, but these processes are maintained even in cells that are unable to access the dark zone (42–44). Therefore, it is likely that T\(_f\) cell–derived IL-10 functions in a FOXP1-independent manner to regulate B cell differentiation and GC development.

The IL-10–STAT3 pathway has been implicated as a promoter of diffuse large B cell lymphoma (DLBCL) and systemic lupus erythematosus (50–53). A high level of circulating IL-10 and active intracellular STAT3 are associated with clinically aggressive cases of DLBCL (51, 52). Constitutively active STAT3 promotes cell proliferation and survival, and anti–IL-10R antibody treatment induces cell cycle arrest and apoptosis in DLBCL cell lines (50, 52).

MATERIALS AND METHODS

Study design

The aim of this study was to characterize the role of T\(_f\) cell–derived IL-10 in the regulation of the GC response after acute viral infection. Most of the experiments consisted of enumerating population frequencies by flow cytometry in different genetic mouse models, analysis of GCs by immunofluorescence, analysis of RNA-seq data, and quantification of nuclear localized transcription factors. Littermate comparisons were used for all experiments where possible. Control and experimental groups were age- and sex-matched. The investigators were not blinded. Experimental replications are indicated in the figure legends.

Mice

C57BL/6 mice were purchased from the National Cancer Institute or the Jackson Laboratory. B6.129P2–Il10tm1Cgn/J (Il10\(^{-/}\)), B6.129(cg)-Floxp3\(^{tm3}(DTR/GFP)Ayr\)/J (Floxp3\(^{GFP–DTA}\)), B6.129S(FVB)-Bceltm1.1Dent/J (Bcld\(^{0/0}\)), B6.129S6-SH2d1a\(^{tm1Pls}\)/J (SAP\(^{-/}\)), and B6.129(Cg)-Floxp3\(^{tm4}(YFP–cre)Ayr\)/J (Floxp3–Cre) mice were purchased from the Jackson Laboratory. 10BiT mice (29), Il10\(^{0/0}\) mice (55), and Cd4–Cre, Cd19–Cre, and Cd11c–Cre mice have been described. Il10\(^{0/0}\) mice were generated by the Flavell laboratory, as previously described (22). All animal experiments were done with approval of the Yale Institutional Animal Care and Use Committee.

Infection and treatments

Mice were given intraperitoneal administration of 2 \(\times 10^5\) plaque-forming units of LCMV Armstrong. Diphtheria toxin was reconstituted according to the manufacturer’s instructions (Sigma). Mice were given diphtheria toxin at a dose of 50 μg per kilogram of body weight on days 4 and 5 (two doses) after infection, as described (56). For IL-10 blockade, an anti–IL-10 monoclonal antibody (0.25 mg/ml, JES5-2A5 clone, provided by J. M. M. den Haan, VU University Medical Center, Amsterdam, Netherlands) was administered intraperitoneally every other day. For NP-OVA in complete Freund’s adjuvant immunization, mice were given 100 μg of NP-OVA mixed with an equal volume of complete Freund’s adjuvant.

Statistical analysis

Results represent means ± SEM, unless indicated otherwise. Statistical significance was determined by paired or unpaired Student’s \(t\) test.
Statistical analyses were performed using Prism GraphPad software version 6.0 (*P < 0.05; **P < 0.01; ***P < 0.001).

SUPPLEMENTARY MATERIALS

immunology.sciencemag.org/cgi/content/full/12/16/eaan4767/DC1

Supplementary Methods

Fig. S1. Flow cytometric gating strategy for Tfh, pre-Tfh, GC B, Treg, and Tfr cells, with IL-10 expression by these populations.

Fig. S2. Mice lacking regulatory CD4+ T cell–derived IL-10 do not have defects in steady-state lymphoid cell populations.

Fig. S3. Temporal development of the GC B cell response in mice lacking regulatory CD4+ T cell–derived IL-10.

Fig. S4. Systemic IL-10 is not required for the GC response.

Fig. S5. Regulatory CD4+ T cell–derived IL-10 is not required for effector CD4+ T cell differentiation.

Fig. S6. Heat map of DEGs based on RNA-seq.

Fig. S7. GC B cells in mice lacking regulatory CD4+ T cell–derived IL-10 display similar levels of Foxp3 and Bcl-6.

Fig. S8. IL-10 does not induce FOXO1 nuclear translocation in IgDhi B cells.

Fig. S9. The VH CDR3 region of GC B cells in mice lacking regulatory CD4+ T cell–derived IL-10 displays altered amino acid physiochemical properties.

Table S1. Tabulated data for Figs. 1 to 6 and figs. S1 to S9.

REFERENCES (36–78)

...the dark zone for effective selection. Immunity
induction of the transcriptional repressor Bcl6.
Interleukin-10 from CD4+ follicular regulatory T cells promotes the germinal center response
Brian J. Laidlaw, Yisi Lu, Robert A. Amezquita, Jason S. Weinstein, Jason A. Vander Heiden, Namita T. Gupta, Steven H. Klein, Susan M. Kaech and Joe Craft

DOI: 10.1126/sciimmunol.aan4767

Probing the functions of follicular regulatory T cells
CD4+ follicular regulatory T (Tfr) cells express key molecules that are associated with regulatory T cell and follicular helper T cell functions. Although it is known that Tfr cells produce interleukin-10 (IL-10), it has been unclear whether IL-10 production by these cells regulates germinal center (GC) responses in vivo. By specifically ablating IL-10 expression in murine Tfr cells, Laidlaw et al. demonstrate that Tfr cell–derived IL-10 does support GC responses in the context of acute viral infection. They found dendritic cells and B cells in the GCs to be IL-10–responsive and showed that IL-10 promoted GC B cells to adopt a dark zone phenotype.