You are currently viewing the editor's summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
“Stalk”ing the antigen
Engineers frequently look to nature for inspiration. Antibody engineers are no exception, modeling new therapeutics on molecules found in animals such as camels and cows. Indeed, 10% of bovine antibodies have unusually long heavy-chain CDR3s as part of their antigen-recognition sites. Stanfield et al. have solved crystal structures of three new bovine Fab fragments and analyzed the five known structures to show that their ultralong CDR H3s all adopt similar architectures composed of a knob domain containing a small conserved β-sheet connected by diverse disulfide-bonded loops that is separated from the antibody surface by a long conserved stalk. They propose that varying the length of the stalk and the positions and number of disulfides in the knob may help drive antibody diversity. These structural insights could be leveraged to tailor antibody-based therapeutics.
- Copyright © 2016, American Association for the Advancement of Science