Donor SIRPα polymorphism modulates the innate immune response to allogeneic grafts

See allHide authors and affiliations

Science Immunology  23 Jun 2017:
Vol. 2, Issue 12, eaam6202
DOI: 10.1126/sciimmunol.aam6202

Looking beyond MHCs in transplant rejection

Mice engineered to lack T, B, and NK cells generate mature dendritic cells in response to allogeneic transplants. Precisely how these mice recognize allografts to be “nonself” has remained a mystery. Using an elegant positional cloning approach, Dai et al. have identified polymorphisms in the mouse gene encoding signal regulatory protein α (SIRPα) to be key in this innate self-nonself recognition. They show that SIRPα receptor CD47 binds SIRPα variants with distinct affinities and propose this affinity sensing to be the mechanism that triggers dendritic cell maturation, the first step in the initiation of the alloimmune response. Given that the SIRPα gene is also polymorphic in humans, it remains to be seen whether human SIRPα variations influence transplantation success.


Mice devoid of T, B, and natural killer (NK) cells distinguish between self and allogeneic nonself despite the absence of an adaptive immune system. When challenged with an allograft, they mount an innate response characterized by accumulation of mature, monocyte-derived dendritic cells (DCs) that produce interleukin-12 and present antigen to T cells. However, the molecular mechanisms by which the innate immune system detects allogeneic nonself to generate these DCs are not known. To address this question, we studied the innate response of Rag2−/−γc−/− mice, which lack T, B, and NK cells, to grafts from allogeneic donors. By positional cloning, we identified that donor polymorphism in the gene encoding signal regulatory protein α (SIRPα) is a key modulator of the recipient’s innate allorecognition response. Donors that differed from the recipient in one or both Sirpa alleles elicited an innate alloresponse. The response was mediated by binding of donor SIRPα to recipient CD47 and was modulated by the strength of the SIRPα-CD47 interaction. Therefore, sensing SIRPα polymorphism by CD47 provides a molecular mechanism by which the innate immune system distinguishes between self and allogeneic nonself independently of T, B, and NK cells.

View Full Text

Stay Connected to Science Immunology