ZNF341 controls STAT3 expression and thereby immunocompetence

See allHide authors and affiliations

Science Immunology  15 Jun 2018:
Vol. 3, Issue 24, eaat4941
DOI: 10.1126/sciimmunol.aat4941

Fingers on the trigger

Hyper–immunoglobulin E syndromes (HIESs) are rare genetic immunodeficiency diseases characterized by bacterial infections, chronic mucocutaneous candidiasis, allergies, and skeletal abnormalities that are associated with excessive TH2 responses and impaired TH17 immunity. Béziat et al. and Frey-Jakobs et al. have studied patients with an autosomal recessive form of HIES and identified mutations in the zinc finger transcription factor ZNF341 as the culprit. Loss-of-function mutations encoding truncated forms of ZNF341 interfered with its ability to recognize a bipartite binding site located in the promoter of STAT3, the transcription factor mutated in most cases of autosomal dominant HIES. ZNF341-supported transcription of STAT3 is a key upstream regulatory step needed to trigger the normal induction of the TH17 differentiation pathway. These findings reveal a previously unappreciated layer of transcriptional regulation controlling JAK-STAT signaling.


Signal transducer and activator of transcription 3 (STAT3) is a central regulator of immune homeostasis. STAT3 levels are strictly controlled, and STAT3 impairment contributes to several diseases including the monogenic autosomal-dominant hyper–immunoglobulin E (IgE) syndrome (AD-HIES). We investigated patients of four consanguineous families with an autosomal-recessive disorder resembling the phenotype of AD-HIES, with symptoms of immunodeficiency, recurrent infections, skeletal abnormalities, and elevated IgE. Patients presented with reduced STAT3 expression and diminished T helper 17 cell numbers, in absence of STAT3 mutations. We identified two distinct homozygous nonsense mutations in ZNF341, which encodes a zinc finger transcription factor. Wild-type ZNF341 bound to and activated the STAT3 promoter, whereas the mutant variants showed impaired transcriptional activation, partly due to nuclear translocation failure. In summary, nonsense mutations in ZNF341 account for the STAT3-like phenotype in four autosomal-recessive kindreds. Thus, ZNF341 is a previously unrecognized regulator of immune homeostasis.

View Full Text

Stay Connected to Science Immunology