Research ArticleALLERGY

Chronic allergen exposure drives accumulation of long-lived IgE plasma cells in the bone marrow, giving rise to serological memory

See allHide authors and affiliations

Science Immunology  10 Jan 2020:
Vol. 5, Issue 43, eaav8402
DOI: 10.1126/sciimmunol.aav8402

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Locating the reservoir for IgE memory

Allergic diseases persist when the immune system chronically churns out allergen-specific IgE antibodies. Identifying the tissue location of IgE+ memory plasma cells is complicated by their very low frequency. Asrat et al. tracked IgE+ memory plasma cell development after intranasal exposure of mice to house dust mite allergen using fluorescent reporter transgenes to mark IgE+ plasma cells. In mice repeatedly exposed to allergen for 15 weeks, long-lived IgE+ memory plasma cells emerged in the bone marrow. IgE+ memory plasma cells in the bone marrow of both mice and allergic human patients yielded pathogenic IgE antibodies capable of eliciting anaphylaxis after transfer. Identification of long-lived plasma cells as the chief source of IgE memory may assist in developing new therapeutic approaches for chronic allergic diseases.


Immunoglobulin E (IgE) plays an important role in allergic diseases. Nevertheless, the source of IgE serological memory remains controversial. We reexamined the mechanism of serological memory in allergy using a dual reporter system to track IgE+ plasma cells in mice. Short-term allergen exposure resulted in the generation of IgE+ plasma cells that resided mainly in secondary lymphoid organs and produced IgE that was unable to degranulate mast cells. In contrast, chronic allergen exposure led to the generation of long-lived IgE+ plasma cells that were primarily derived from sequential class switching of IgG1, accumulated in the bone marrow, and produced IgE capable of inducing anaphylaxis. IgE+ plasma cells were found in the bone marrow of human allergic, but not nonallergic donors, and allergen-specific IgE produced by these cells was able to induce mast cell degranulation when transferred to mice. These data demonstrate that long-lived IgE+ bone marrow plasma cells arise during chronic allergen exposure and establish serological memory in both mice and humans.

View Full Text

Stay Connected to Science Immunology