You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Autophagy protects tumors from T cells
Tumors evade antitumor T cells by various mechanisms. Young et al. used a CRISPR screen to identify that TNFα and autophagy play a role in T cell–mediated killing of tumor cells. Pharmacologic or genetic (CRISPR knockout of Rb1cc1) inhibition of autophagy in tumor cells increased TNFα-mediated T cell killing of tumor cells. Rb1cc1 knockout in tumor cells improved the efficacy of immune checkpoint blockade in a mouse tumor model. However, CRISPR knockout of the TNFα receptor in tumor cells partially abrogated the improved efficacy of immune checkpoint blockade in the absence of Rb1cc1. Thus, autophagy inhibition may improve T cell–mediated immunotherapies in patients with cancer.
Abstract
Although T cell checkpoint inhibitors have transformed the treatment of cancer, the molecular determinants of tumor cell sensitivity to T cell–mediated killing need further elucidation. Here, we describe a mouse genome–scale CRISPR knockout screen that identifies tumor cell TNFα signaling as an important component of T cell–induced apoptosis, with NF-κB signaling and autophagy as major protective mechanisms. Knockout of individual autophagy genes sensitized tumor cells to killing by T cells that were activated via specific TCR or by a CD3 bispecific antibody. Conversely, inhibition of mTOR signaling, which results in increased autophagic activity, protected tumor cells from T cell killing. Autophagy functions at a relatively early step in the TNFα signaling pathway, limiting FADD-dependent caspase-8 activation. Genetic inactivation of tumor cell autophagy enhanced the efficacy of immune checkpoint blockade in mouse tumor models. Thus, targeting the protective autophagy pathway might sensitize tumors to T cell–engaging immunotherapies in the clinic.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
This is an article distributed under the terms of the Science Journals Default License.