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Fig. 6. Mucispirillum triggers intestinal inflammation in doubly deficient Nod2/Cybb mice. SPF Jax WT (n = 4), DKO (n = 21), Nod2−/− (n = 4), and Cybb−/− (n = 4) mice 
were orally gavaged with either Mucispirillum or culture broth (sham) every other day up to 7 days. Lcn-2 concentration (A) was measured in fecal samples before (day 0) 
and 7 days after the first oral gavage. Colon length (B) was determined on day 7 after infection with Mucispirillum. (A and B) Bars show mean; data are from four indepen-
dent experiments. **P < 0.01; ****P < 0.0001 by one-way ANOVA followed by Tukey’s multiple comparisons test. (C) Representative histology of H&E-stained sections from 
large intestines of Mucispirillum-infected WT, DKO, Nod2−/−, and Cybb−/− mice (on day 7 after infection). Arrows show inflammatory cell infiltrate. Scale bars, 500 m. 
(D) Histopathological scores of cecal and colonic tissues from Mucispirillum-infected WT (n = 4), DKO (n = 21), Nod2−/− (n = 4), and Cybb−/− (n = 4) mice (on day 7 after infection). 
Bars show median; data are from four independent experiments. *P < 0.05 by Kruskal-Wallis test followed by Dunn’s post test. (E and F) SPF Jax-DKO mice were treated 
with an anti-CD20 monoclonal antibody (anti-CD20) (n = 10) or control antibody (sham) (n = 8) and then orally gavaged with Mucispirillum every other day up to 10 days. 
Fecal Lcn-2 concentration (E) was measured before (day 0), on day 5, and on day 10 after oral infection with Mucispirillum. Colon length (F) was measured in anti–CD20- 
treated DKO (n = 10) and in sham-treated DKO mice (n = 8) on day 10 after infection. Bars show mean; data are from two independent experiments. One-way ANOVA 
followed by Tukey’s multiple comparisons test. **P < 0.01; ****P < 0.0001 in (E); **P = 0.013 by two-tailed unpaired t test in (F).
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In WT mice, the accumulation and intestinal invasion of Mucispirillum 
are neutralized by Nod2 and phagosome NAPDH activity. The pro-
tective mechanisms appear to involve the recruitment of neutrophils 
to the LP, a step regulated by Nod2 at the steady state, and transcy-
tosis of neutrophils into the intestinal lumen where the bacterium 
is engulfed and killed via a Cybb-dependent oxidative burst. Single 
deficiency of Nod2 and Cybb leads to Mucispirillum accumulation to 
a lesser extent than that observed in DKO mice and was not sufficient 
to trigger colitis in the presence of Tac microbiota. These results sug-
gest that additional Nod2-dependent mechanisms for bacterial clear-
ance operate in Cybb−/− mice. Although previous studies suggested 
that Nod2 can regulate ROS production in intestinal epithelial cells 
and bone marrow–derived macrophages (55, 56), our findings do not 
support an important role for Nod2 in regulating ROS generation 
in neutrophils. Consistent with our data, Deshmukh and colleagues 
(57) showed that NOD2 does not regulate ROS generation in neutrophils 
stimulated with Staphylococcus aureus, suggesting that NOD2 regu-
lates ROS generation in a cell type–specific manner and/or only un-
der certain experimental conditions.

Impaired recruitment of neutrophils to intestinal inflammatory 
sites has been observed in patients with CD (58, 59). However, fur-
ther work is needed to understand the role of neutrophils in colitis 
and the mechanism by which NOD2 regulates the recruitment of 
neutrophils in the intestine. The accumulation of Mucispirillum de-
tected in the colonic mucus layer of Tac-Nod2−/− mice may be the 
consequence of impaired luminal transcytosis of neutrophils, but other 
mechanisms including impaired secretion of mucins may play a role 
(60). Our data suggest that the accumulation of Mucispirillum within 
the intestinal tissue, rather than in the mucus layer, plays a pivotal 
role in triggering inflammatory disease. Impaired clearance of 
Mucispirillum in the intestinal tissue appears to drive colitogenic TH1 
CD4+ T cells in Nod2−/–Cybb−/− mice, which is also observed in patients 
with CD (1, 2). Consistent with recent studies showing that extra-
thymically generated regulatory T cells play a role in the establishment 
of border-dwelling bacteria such as Mucispirillum during commu-
nity assembly (61), our results show enhanced expression of Foxp3 
in the intestine of Mucispirillum-enriched Tac-DKO mice. Howev-
er, further work is needed to understand the role, if any, of regula-
tory T cells in colitis triggered by Mucispirillum in Tac-DKO mice.

The role of Nod2 in the regulation of the composition of the micro-
biota is controversial. Some studies showed an altered composition of 
the gut microbiota with a net increase in the abundance of Bacteroidetes 
and Firmicutes in Nod2−/− mice (62, 63). However, other studies using 
littermate mice did not identify substantial differences in the com-
position of the gut microbial community in Nod2−/− mice (64, 65). 
A previous study showed that Nod2 deficiency gives rise to subtle 
intestinal abnormalities that correlate with the expansion of the com-
mensal Bacteroides vulgatus (66). Unlike Mucispirillum in DKO mice, 
B. vulgatus did not elicit spontaneous inflammation but exacerbated 
intestinal inflammation after epithelial damage induced by piroxi-
cam treatment in Nod2−/− mice. Thus, B. vulgatus promotes inflam-
mation in Nod2−/− mice but does not trigger spontaneous CD-like 
inflammation in Nod2 mutant mice.

We found that Mucispirillum elicits IgA and IgG immune responses 
in mice harboring the bacterium. These studies are consistent with 
a previous report that showed that Mucispirillum evades T cell–
independent IgA production but elicits T cell–dependent IgA responses 
(67). The induction of IgA and IgG production by Mucispirillum 
likely reflects the localization of the bacterium near the epithelium 

and its ability to elicit adaptive immune responses. Our findings 
suggest a protective role of maternal Igs in breast milk against the 
development of CD-like colitis. Previous evidence suggested that 
breastfeeding during infancy protects from pediatric and adult-onset 
IBD (44). However, further work is needed to establish the mecha-
nism by which breastfeeding protects against the development of 
IBD. Nevertheless, the observation that maternal Igs confer protec-
tion against colitis suggests that vaccines may be potential thera-
peutic approaches for patients with CD once colitogenic bacterial 
species are identified in humans.

MATERIALS AND METHODS
Study design
The aim of this study was to understand the link between CD-like 
colitis and the microbiota using a mouse model that is based on 
genes involved in CD susceptibility. The experimental design involved 
in vivo and in vitro experiments, including fostering experiments, 
bacterial in vivo challenge, administration of neutralizing antibodies, 
histological analysis, laser microdissection, enzyme-linked immuno
sorbent assay (ELISA), chemiluminescence assay, flow cytometry, 
16S rRNA gene sequencing, and qPCR analysis. The sample size (at 
least three to five mice per group) for the in vivo experiments was 
determined to be the optimal size for statistical analysis while allow-
ing for independent repeats. Animals were randomly assigned to ex-
perimental groups during administration of anti-TNF antibody, B 
cell depletion, and Mucispirillum and B. uniformis infections. The 
investigators were not blinded to allocation during experiments and 
analyses unless otherwise indicated. Experimental replication is in-
dicated in the figure legends.

Experimental model and mice
Mice
C57BL/6, Nod2−/−, Cybb−/−, and FcRn−/− mice were originally pur-
chased from the Jackson Laboratory and bred in-house at the Univer-
sity of Michigan. C57BL/6 mice were also purchased from Taconic 
Biosciences. All mice were maintained in SPF conditions. JH

−/− mice 
were provided by M. Cascalho (University of Michigan), and IgA−/− 
mice were provided by B. Arulanandam (UT Health San Antonio). 
Doubly deficient Nod2/Cybb mice were generated by breeding single 
Nod2−/− and Cybb−/− mice for six generations. All mice were on the 
C57BL/6 background. All animal studies were performed according 
to approved protocols by the University of Michigan Committee on 
the Use and Care of Animals.

Cohousing and fostering experiments
For cohousing experiments, Jax JH

−/−, IgA−/−, and FcRn−/− breeding 
pairs were converted in trio breeding cages by adding a Nod2/
Cybb−/− female harboring Taconic microbiota. Mice were cohoused 
for more than 4 weeks before performing fostering experiments. For 
fostering experiments, the day on which pups were born was con-
sidered day 0 and pups were fostered between day 0 and day 2. Foster 
mothers were selected on the basis of the presence of a healthy and 
well-fed litter that was within 1 or 2 days of age of the fostered pups. 
Foster mothers were removed from the cage and placed in a holding 
pen, whereas the original litter was euthanized. The fostered pups 
(whole litters, both males and females) were gently covered with the 
nesting material and bedding of the foster mother’s cage. Mothers 
were then introduced in their original cage with the fostered pups. 
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To avoid potential cage effects, we performed several experiments 
using the same Jax or Tac C57BL/6 mothers for fostering multiple 
litters of WT or mutant pups.

Intestinal histopathology and disease evaluation
Fostered mice (both males and females) were euthanized at ~4 weeks 
of age, and the terminal ileum, cecum, and colon were flushed with 
phosphate-buffered saline (PBS) (Gibco), fixed in 10% formalin (Fisher 
Scientific), and then processed for hematoxylin and eosin (H&E) 
staining. Histologic evaluation was performed in a blinded fashion, 
using a scoring system described previously with some modifications 
(68). Briefly, a three- to four-point scale was used to denote the se-
verity of inflammation (0, none; 1, mild; 2, moderate; and 3, severe), 
the level of involvement (0, none; 1, mucosa; 2, mucosa and submu-
cosa; and 3, transmural), and the extent of epithelial/crypt damage 
(0, none; 1, basal 1/3; 2, basal 2/3; 3, crypt loss; 4, crypt and surface 
epithelial destruction). Each variable was evaluated in the involved 
areas and then multiplied by a factor reflecting the percentage of 
the cecum/colon involved (0 to 10%, 11 to 40%, 41 to 70%, and 71 
to 100%), and lastly summed to obtain the overall score. Measure-
ment of the extension of colonic inflammatory involvement was 
performed using Aperio ImageScope version 12.1.0.5029 (Aperio 
Technologies Inc.).

Laser capture microdissection
The Leica LMD6 Laser Microdissection (Leica Microsystems) was 
used to capture uninflamed and inflamed colonic areas from the 
intestines of 4-week-old Tac-DKO mice. Formalin-fixed, paraffin- 
embedded colonic sections (8 m thick) were deposited on polyethylene 
terephthalate (PET) membrane FrameSlides (Leica Microsystems) and 
then deparaffinized in xylene followed by rehydration by 100-95-70% 
ethanol. DNA was extracted from the laser-captured areas using the 
Arcturus PicoPure DNA Extraction Kit (Applied Biosystems) with 
the addition of glass beads to disrupt the bacterial cells.

Enzyme-linked immunosorbent assay
For measurement of Mucispirillum-specific IgA and IgG by ELISA, 
Mucispirillum cultures were washed, heat-killed at 85°C for 1 hour, 
and resuspended in 10 ml of carbonate/bicarbonate (pH 9.6) buffer, and 
100 ml was added to each well of a 96-well ELISA plate for overnight 
coating at 4°C. Wells were blocked with 1% (w/v) bovine serum 
albumin (Fisher Scientific) in PBS for 2 hours at room temperature. 
Fecal samples were resuspended with sterile PBS (100 mg/ml) and 
filtered through a 40-m cell strainer to remove debris, and 200 ml 
was added to each well. To detect serum levels of Mucispirillum- 
specific Igs, we diluted mouse sera at 1:200 and incubated them over-
night at 4°C. The presence of Mucispirillum-specific IgA and IgG 
was detected by alkaline phosphatase–conjugated polyclonal goat 
anti-mouse IgG or IgA antibodies (Southern Biotechnology Associates). 
Plates were developed using p-nitrophenyl phosphate substrate (South-
ern Biotechnology Associates), and OD405 (optical density at 405 nm) 
values were determined. To measure total IgA and IgG, we coated 
ELISA plates with unlabeled goat anti-mouse IgA or IgG (Southern 
Biotechnology Associates). For measurement of fecal Lcn-2, feces 
were resuspended with sterile PBS (100 mg/ml), vortexed for 5 min, 
and then centrifuged for 10 min at 12,000 rpm at 4°C. Lcn-2 levels 
were determined in fecal supernatants using a Duoset murine Lcn-2 
ELISA kit (R&D Systems). ELISAs for cytokines were performed by 
the University of Michigan ELISA Core.

SUPPLEMENTARY MATERIALS
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regulating immune homeostasis in early life.
developing a model for studying Crohn's disease, the study also highlights the importance of maternal antibodies in
developed colitis only after weaning because maternal antibodies protected them from it before weaning. In addition to 

. NOD2/CYBB-deficient miceMucispirillum schaedlerispontaneous colitis that is driven by a Gram-negative pathobiont, 
protein 2 (NOD2) and the cytochrome b-245 beta chain (CYBB) subunit of phagocyte NADPH oxidase develop 

containing−inflammation seen in patients with Crohn's disease. Mice lacking nucleotide-binding oligomerization domain
 report a mouse model where they can recapitulate multiple hallmarks of intestinal et al.difficult to model. Here, Caruso 

Although several mouse models of inflammatory bowel disease exist, Crohn's disease has been particularly
A mouse model for Crohn's disease
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