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genes associated with dendritic cells, Lag3 and Cd11c (fig. S15A) (20). 
Gene set enrichment and network analysis supported this finding, 
with gene modules associated with skeletal muscle (fig. S15B) and 
strong enrichment of myogenic gene sets (fig. S15C). Because the clusters 
were also enriched for genes associated with endocytosis (fig. S15D), 
two major possibilities exist for this cluster. It could be a cluster 
of myeloid cells assisting in muscle production, or the presence of 
muscle-related transcripts could be the result of endocytosing 
muscle debris.

Fibrosis-associated macrophages include distinct  
subsets F1 (MHCIIhi+) and F2 (CD9hi+IL-36g+)
We also applied pseudotime and RNA velocity analysis to deter-
mine fibrosis-associated cluster differentiation and polarization re-
lationships (fig. S12). From pseudotime analysis, one precursor cluster 
(FP1) led to a branching trajectory with two terminal fibrosis-associated 
macrophage clusters, F1 and F2 (Fig. 4A). RNA velocity confirmed 
pseudotime results and continued polarization of F2 from the 
bulk macrophages. The F1 cluster expressed traditional markers of 
inflammation, and genes associated with the IFN response including 
Irf7, Il18, and Tlr2 (Fig. 4B). Gene sets for both IFN and IFN 
responses were enriched in F1 (Fig. 4C). Gene networks also showed 
modules associated with IFN response (Stat1, Myd88, Irf7, and Tlr2) 

and cytokines associated with inflammatory function (Il18, Ccl4, Ccl7, 
and Cxcl10) (Fig. 4D). Although both macrophage populations have 
elements of inflammation, F1 and F2 exhibit significantly different 
expression profiles.

Although F2 was small, it had a distinct gene expression signa-
ture that included recently discovered cytokines and genes with 
limited characterization. Although F2 expressed inflammatory 
markers Slpi, Hdc, Tlr2, and Il1b (fig. S16), it also expressed genes 
associated with autoimmunity: Il36, Trem1, Asprv1, and Il17ra 
(Fig. 4B). The unique nature of this subset and possible functional 
relevance is exemplified in the expression of Il36 (also known as 
Il1f9) that is found in lesions of skin psoriasis and participates in a 
positive feedback loop in type 17 immune responses (21). IL-17, the 
primary cytokine of type 17 responses, is also associated with fibrotic 
diseases not yet associated with autoimmunity, including idiopathic 
pulmonary fibrosis (22, 23), cardiac fibrosis (24), and the FBR, 
suggesting a type 17 autoimmune connection. The F2 cluster 
expressed increased Il17ra, further supporting the role of IL-17 in 
this subset and the macrophage responsiveness in the PCL tissue 
microenvironment.

To validate experimentally the fibrosis-associated clusters, we 
performed flow cytometry using the computationally defined surface 
marker strategy including CD9, CD301b, and MHCII (Fig. 4, E and F). 

Fig. 4. Fibrosis-associated macrophages include distinct subsets F1 (MHCIIhi+) and F2 (CD9hi+IL-36g+). (A) Lineage schematic of fibrotic subsets from Slingshot 
pseudotime analysis and trajectory including descriptive marker combination. Pseudotime trajectory is shown in a principal component plot (PC1 versus PC2). (B) Fibrotic 
subsets are distinguished by specific marker. (C) Heatmap of gene set enrichment scores normalized across clusters for gene sets found up-regulated in F1 and running 
gene set enrichment plots for the IFN and IFN responses. (D) Gene network representation for relationships of differentially expressed genes in F1 (top) and F2 (bottom) 
by STRING metadata scores. (E) Flow cytometry gating strategy specific to F1 and (F2 + FP1) from F4/80hi+ macrophages using CD9, MHCII, and CD301b. (F) Time course 
of F1 and (F2 + FP1) subsets in UBM, PCL, and saline microenvironments (n = 4, biologically independent). Two-way ANOVA P values are presented. *P < 0.05; ***P < 0.0001. 
(G) Immunofluorescence histology for IL-36 (violet) and F4/80 (green) at 1-week VML with synthetic PCL material. Low power indicates location of PCL material and 
muscle defect; arrows detail colocalization (scale bars, 500 and 50 m).
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According to the computational analysis, the surface markers 
differentiate the F1 cluster, but the F2 and FP1 clusters are not 
separated. Both F1 and F2 + FP1 were elevated in the PCL fibrotic 
condition at 1 week with a significant reduction in F1 from 1 to 
3 weeks. However, levels of F2 + FP1 were consistently elevated, 
suggesting that F2 may be important in the development of patho-
logical fibrosis. The UBM regenerative condition had low levels of 
both F1 and F2 at 1 week, which was reduced at 3 and 6 weeks. 
The control wound condition had high levels of F1 at 1 and 3 weeks 
with a significant decrease at 3 weeks. There was a low, decreasing 
number of F2 macrophages in the control wound environment, 
further suggesting that F2 is associated with fibrotic pathology. 
Again, the complexity of the wound environment is apparent with 
all macrophage subsets present at early time points in each condi-
tion. However, enrichment of macrophage subsets in specific tissue 
environments predicted their expression at later time points as 
seen with F2 that is the primary macrophage in PCL implants at 
6 weeks. Last, we performed additional protein-level validation for 
IL-36 and CD9 on F4/80+ macrophages with immunofluorescence, 
and coexpression of these markers representing the F2 subset 
was visible in tissue environments containing PCL (Fig. 4G and 
fig. S17).

Generation of F2 macrophages is dependent on IL-17
The F2 macrophage subset was enriched in the PCL condition that 
induces pathological fibrosis as part of the FBR. Because the F2 
macrophages expressed IL-36 and genes associated with IL-17 
immune responses, we further evaluated the F2 population and its 
dependence on IL-17 signaling. PCL was implanted in mice lacking 
IL-17A (Il17a−/−) or the IL-17 receptor (Il17ra−/−) to knock down 
IL-17 signaling. Fibrosis in response to PCL decreased in Il17a−/− mice 
but was only completely abrogated in Il17ra−/− mice (12). Connecting 
this functional outcome with macrophage responses, immunostaining 
for CD9 and F/480 decreased in Il17a−/− and Il17ra−/− mice treated 
with PCL compared with wild type (WT) after 12 weeks (Fig. 5A). 
Il36, coding for a key cytokine expressed in F2 that links IL-17 and 
autoimmune responses in the tissue, significantly increased after PCL 
implantation compared with saline in WT animals but decreased 
significantly in Il17a−/− and Il17ra−/− mice (Fig. 5B). Over the 6 weeks 
of PCL biomaterial implantation, Il36, along with Trem1 and hall-
mark genes of fibrosis Col1a1 and Col3a1, significantly increased 
from 1 to 3 weeks and persisted through 6 weeks (Fig. 5C). Macro-
phages cocultured with TH17 T cells increased expression of Tnfa, 
Il36, Trem1, and Il17ra (fig. S18A). Cultured fibroblasts exposed to 
IL-36 increased expression of Nfkbiz, an early regulator linked to 

Fig. 5. Profibrotic CD9hi+IL-36+ macrophages are dependent on IL-17 signaling, and terminal clusters are relevant in human pathologies. (A) Immunofluorescence 
staining for mouse macrophage marker F4/80 and CD9 in WT, Il17ra−/−, and Il17a−/− mice 12 weeks after implantation with PCL (scale bars, 50 m). (B) Il36 gene expression 
in WT, Il17ra−/−, and Il17a−/− mice with PCL normalized to saline controls (n = 4, biologically independent; ANOVA with multiple comparison, ***P < 0.001). (C) Time course 
of Il36 signaling and fibrosis-related gene expression over 6 weeks, normalized to saline controls (n = 4, biologically independent; ANOVA with multiple comparison, 
***P < 0.001). (D) Immunofluorescent staining for CD64-, CD9-, and IL-36–positive macrophages in human breast implant tissue capsules (scale bars, 50 m), juvenile 
xanthogranuloma, and Langerhans cell histiocytosis (scale bars, 200 m). (E) Gene expression correlations of human IL17RA with IL36, IL17RA, and CD9 with MSR1 in 
human breast implant fibrotic capsules. (F) Network diagrams and similarity heatmaps for terminal fibrotic and regenerative macrophage clusters to clusters from repository 
single-cell RNA datasets for murine models of cancer (sarcoma ± immunotherapies aCTLA-4, aPD-1), lung fibrosis (± bleomycin induction), and human liver. Circles rep-
resent percent compositions of clusters by condition.
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TH17- and IL-36–dependent signaling (25) as well as additional Il36 
itself (fig. S18B). Overall, these data support a connection between IL-
17 signaling and IL-36 in F2 and fibrotic macrophage subsets with 
potential implications toward fibrosis.

The relevance of the fibrosis-associated F2 profile was explored 
in human fibrotic pathologies. Positive immunofluorescence staining 
for F2-specific markers (CD64+CD9+IL-36 +) in human breast implant 
tissue capsules as well as histiocytosis (juvenile xanthogranuloma and 
Langerhans cell histiocytosis) suggest that these macrophages are also 
relevant to human disease (Fig. 5D). Furthermore, IL17RA expression 
is correlated to IL36 and the expression of the macrophage marker 
MSR1, supporting a role of the IL-17/IL-36 feedback loop in human 
macrophages (Fig. 5E).

To determine the broader relevance of the model biomaterial-
induced macrophages, we used the SingleCellNet program (26) and 
trained the scRNAseq cell classification algorithm using the terminal 
macrophage datasets (fig. S19). We then compared the results with 
macrophages computationally extracted from publicly available 
datasets of healthy human liver (27), a mouse model of idiopathic 
pulmonary fibrosis (28), and a mouse model of sarcoma with cancer 
immunotherapy (6). After clustering macrophages within each dataset, 
we applied SingleCellNet to quantify similarity with the terminal 
biomaterial macrophages (Fig. 5F). The R1 and R3 macrophage 
subsets were found in all of the conditions that we evaluated. Although 
the expression of muscle markers in R3 initially suggests that they 
may be unique to the muscle tissue environment, their presence in 
all the conditions studied suggests that even this subset has broader 
relevance in multiple tissue types and pathologies. We found that only 
liver, a strongly regenerative tissue, contained macrophages similar 
to R2. Most of the macrophages in the sarcoma were similar to F1, 
but there was also a small cluster similar to F2. The F2 cluster was 
also present in the lung tissue.

DISCUSSION
Here, we applied scRNAseq to identify and characterize macrophage 
phenotypes associated with tissue microenvironments modeled using 
biomaterials that promote divergent tissue responses, immune profiles, 
and functional outcomes. The unbiased classification and charac-
terization from the single-cell analysis provide distinct phenotypic 
profiles that can be identified using a combination of surface markers 
for the differentiated macrophages that are typically used to charac-
terize M1 and M2 polarization. Terminal clusters discovered from 
single-cell analysis provide refined phenotypic and functional macro-
phage characterization in different tissue environments. We identified 
a previously unknown macrophage population that links a fibrotic 
tissue environment with type 17 immune responses and signatures 
of autoimmunity, which was abrogated with loss of IL-17 signaling.

The macrophages associated with UBM and IL-4 in the tissue are 
heterogeneous and distributed in phenotypically distinct clusters. IL-4 
is a cytokine recognized for promoting repair of muscle (9), liver (29), 
and cartilage (30) and is critical for macrophage polarization in a 
healing wound (31). The UBM environment induced greater macro-
phage heterogeneity with two primary terminal subsets with pheno-
types relevant to tissue repair. Expression analysis of the R1 cluster 
suggests that it is important for mobilizing and educating immune 
cells through the expression of chemokines and increased antigen 
presentation that is required during the early wound healing process. 
The R2 macrophages, with the highest level of Il4ra, expressed genes 

relevant to stimulation of other cell types important for type 2 re-
sponses and regeneration including Ccl24 (Eotaxin-2), coding for a 
protein that attracts and activates eosinophils. Both macrophage 
populations may be acting, in part, by mobilizing and instructing the 
immune response. This finding is supported by Heredia et al. (32), 
who demonstrated that the IL-4–secreting eosinophils are critical to 
muscle repair. The metabolic profiles of R1 (glycolysis) and R2 
(oxidative phosphorylation) correlate with distinct functions of antigen 
presentation and adaptive-related chemokine expression versus 
phagocytosis, which was validated experimentally in sorted R2 
macrophages. Glycolysis has been associated with inflammatory 
macrophages (33) and oxidative phosphorylation with alternatively 
activated macrophages (34). In vitro studies of conventional 
M2 macrophages required inhibition of both metabolic pathways to 
inhibit IL-4–induced STAT6 (signal transducer and activator of tran-
scription 6) phosphorylation (35).

The distribution of macrophages isolated from the PCL-treated 
wounds was less heterogeneous than the ECM-treated tissues and 
included the functional subsets F1 and F2. The F1 cluster expresses 
many genes associated with inflammation including IFN-related 
cytokines and activation of the innate and adaptive immune system. 
The R1 cluster also expressed markers of inflammation and mobili-
zation, but the magnitude of expression and types of inflammatory 
markers were significantly different. This difference in the F1 and 
R1 inflammatory profile suggests the importance of the early 
inflammatory response in directing the subsequent tissue repair or 
development of a foreign body capsule or fibrosis. The time course 
of flow cytometry revealed that R1 increased with ECM treatment. 
Because ECM treatment improves tissue repair, R1 may represent an 
inflammatory phenotype that can be targeted to enhance tissue 
development.

The F2 cluster associated with PCL treatment expressed genes 
that connected type 17 immunity and markers of autoimmune disease. 
Type 17 immune responses are associated with autoimmunity in 
diseases such as psoriasis, irritable bowel syndrome, and inflammatory 
arthritis (21, 36–38). The F2 macrophages express IL-36, a cyto-
kine that is found clinically in the skin of patients with psoriasis and 
in inflammatory arthritis (39). This cytokine was also recently identi-
fied as a target in tumors that, when blocked, enhances responsive-
ness to immunotherapy (40). It is also implicated in a positive feedback 
loop with IL-17 (21). In other work, we demonstrated that IL-17 is 
produced by innate lymphocytes, , and CD4+ T cells in response 
to PCL implantation in mice and in the fibrous capsule surrounding 
human breast implants (12). IL-17 is implicated in fibrotic disease 
in the lung (23), heart (24), and liver (41) in addition to the FBR 
(42). The F2 macrophage population expressing IL-17 receptor 
A links IL-17 signaling, fibrosis, and autoimmune disease.

The F2 macrophages also expressed multiple forms of Trem 
(triggering receptor expressed on myeloid cells) and Trem ligand 
that are associated with autoimmune diseases such as inflammatory 
bowel disease and psoriasis (43, 44). TREM integrates and broadly 
modifies inflammatory signals across the innate and adaptive immune 
system. The presence of F2 surface markers and related cytokines in 
human tissues provides evidence that the tissue immune environment 
created by PCL and the mechanisms of response may be broadly 
relevant to various pathological conditions. Further supporting the 
broader relevance of the macrophage subsets, we found macrophage 
clusters similar to F2 in publicly available datasets of idiopathic lung 
fibrosis and sarcoma. Multiple genes in the F2 subset have functions 
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that remain unknown. On the basis of the potential importance of 
this subset in disease pathology, further studies into these unknown 
genes may be warranted. Although small in number, the F2 macro-
phage subset is highly differentiated and may play a critical role in 
pathologies associated with the proinflammatory macrophages in 
tissue fibrosis.

Further studies to investigate the macrophage subsets that we 
identified by single-cell analysis will determine whether the surface 
markers and their associated subpopulations and respective expres-
sion profiles are stable and broadly relevant. We characterized only 
a subset of macrophages in this study and further analysis into 
expression profile and function of other macrophage and myeloid 
populations in the tissue environment that affect healing and fibrosis 
outcomes. Additional spatial profiling of the macrophage subsets will 
enable understanding of their communication with other immune 
cell types and proximity to cells involved directly in healing or fibrosis.

MATERIALS AND METHODS
Experimental model and subject details
Surgical procedures and implantation
All animal procedures were performed in adherence to approved 
Johns Hopkins University Institutional Animal Care and Use Com-
mittee protocols. Animals included female mice WT C57BL/6J 
(Jackson Laboratories) and transgenic Il17a−/− (Y. Iwakura, University 
of Tokyo, Tokyo, Japan) and IL17ra−/− (T. Mustelin, Amgen, Seattle) 
at ages from 8 to 10 weeks. The bilateral traumatic muscle defect 
was created as previously described (9). The defects were filled with 
30 mg of a synthetic material or biological scaffold material. PCL 
was used as a synthetic material (particulate, Mn = 50,000 g/mol, 
mean particle size <600 m, Polysciences). In turn, as a biological 
scaffold material, decellularized UBM (MatriStem, ACell) was im-
planted from 0.05 ml of a suspension (400 mg/ml) in phosphate-
buffered saline (PBS). Control surgeries were injected with 0.05 ml 
of PBS as a no implant control. All materials were ultraviolet-sterilized 
before use. Mice were given subcutaneous carprofen (Rimadyl, Zoetis) 
at 5 mg/kg for pain relief. For the sample harvest, mice were euthanized 
at 1, 3, 6, and 12 weeks after surgery.
Specimen harvest
We obtained murine samples by dissecting the quadriceps femoris 
muscle followed by fine dicing. Tissues were digested for 45 min at 
37°C with Liberase TL (1.67 Wünsch units/ml) (Roche Diagnostics) 
and deoxyribonuclease I (0.2 mg/ml) (Roche Diagnostics) in RPMI 
1640 medium (Gibco). The digested tissues were ground through 
70-m cell strainers (Thermo Fisher Scientific), rinsed with PBS + 
0.05% bovine serum albumin, and then washed twice with 1× PBS. 
The enriched single-cell suspension was washed and stained with 
the following antibody panels, respective to the application. There 
were no noticeable differences in single-cell isolation from different 
material environments.
Flow cytometry and fluorescence-activated cell sorting
For cell isolation using fluorescence-activated cell sorting (FACS), 
suspensions of single cells from digested muscles were stained for 
20 min at 4°C using Viability Dye eFluor 780 (eBioscience). For single-
cell analysis, staining in an antibody panel was conducted for 30 min 
at 4°C including F4/80 phycoerythrin (PE)–Cy7 (BioLegend), CD11b 
Alexa Fluor 700 (BioLegend), CD64 PerCP-Cy5.5 (BioLegend), MHCII 
(I-A/I-E) Alexa Fluor 488 (BioLegend), CD3 allophycocyanin (APC) 
(BioLegend), Ly6c Brilliant Violet 510 (BioLegend), CD45 Brilliant 

Violet 605 (BioLegend), and Fc Block TruStain fcX (anti-mouse 
CD16/32) (BioLegend) (table S2). Sorting of murine macrophages 
(CD45+F4/80hi+CD64+) was performed from live, CD45+CD3− using 
a BD FACSAria II (BD Biosciences). The post-sort purity of macro-
phages used for scRNAseq was >98%. For subset analysis, an Attune 
NxT Flow Cytometer (Thermo Fisher Scientific) after viability stain, 
a panel comprised of F4/80, CD9, CD11c, MHCII, CD301b, CD206, 
CD86, Ly6c, CD45, and Fc BLock TruStain FcX (table S3). Data 
analysis was performed in FlowJo Flow Cytometry Analysis Software 
(TreeStar). For tSNE projection of multidimensional flow cytometry 
datasets, downsampling of macrophages (CD45+F4/80hi+) was per-
formed to 50,400 cells total of samples from regenerative, fibrotic, 
saline control conditions (n = 4, biologically independent). Then, sam-
ples were concatenated and tSNE projection was computed (iterations = 
1000, perplexity = 30) (fig. S20). For visualization of separation macro-
phage, subtypes were back-gated onto two-dimensional projection.
Histopathology and immunofluorescence microscopy
After harvest, implanted tissues at 1, 3, 6, and 12 weeks after implan​
tation were fixed in 10% neutral buffered formalin for 48 hours 
before ethanol and xylene dehydration. Archival formalin-fixed 
paraffin-embedded tissues from patients with conditions known to 
involve increased tissue macrophages, such as Langerhans cell histio-
cytosis, juvenile xanthogranuloma, and dermal scar, were obtained 
from the Johns Hopkins Hospital surgical pathology archives. Human 
tissue samples including silicone breast implants were acquired from 
patients undergoing implant exchange or replacement surgery ex-
emption IRB00088842. The average age was 56 years old (range of 
41 to 70 years old), and the average implant residence time was 
41 months (range of 1 to 360 months). Paraffin-embedded sections 
of 5 m thickness were produced using a microtome (Leica RM2255 
microtome). Immunofluorescence staining for CD9, IL-36, F4/80, 
and CD301b was performed with a tyramide signal amplification 
method using consecutive staining with Opal-520, Opal-570, and 
Opal-650, respectively. Histological slides were rehydrated in an 
ethanol to water gradient. After post-fixation in 10% neutral buffered 
formalin for 30 min, antigen retrieval was conducted in 1 × AR6 
buffer (Perkin-Elmer) at 95°C for 15 min. After cooling, endogenous 
peroxidases were quenched in 3% (v/v) aqueous peroxide (Sigma-
Aldrich). All staining was conducted at room temperature after 
blocking with antibody block/diluent (Perkin-Elmer). For each 
staining round, the primary antibody in block/diluent (Perkin-Elmer) 
was incubated at room temperature for 60 min, followed by 10 min 
of incubation with horseradish peroxidase (HRP) polymer–conjugated 
secondary antibody, and 10 min of Opal reagent (1:150) in 1× plus 
amplification diluent (Perkin-Elmer). The antibody HRP complex 
was stripped at 95°C 1× AR6 buffer (Perkin-Elmer) for 15 min. After 
quenching of autofluorescence in 0.04% (w/v) Sudan Black (Sigma-
Aldrich) dissolved in 70% (v/v) ethanol, slides were then counter-
stained with 4′,6-diamidino-2-phenylindole (DAPI) for 5 min 
before being mounted using Dako mounting medium. Imaging of 
the histological samples was performed on Zeiss Axio Observer 
with Apotome.2 and Zeiss Zen Blue software version 2.5.
Phagocytosis assay
Macrophage subsets R1 and R2 were sorted according to the gating 
strategy described in fig. S5. Around 100,000 cells were collected in 
RPMI 1640 + 5% (v/v) fetal bovine serum (Gibco). Macrophages 
were seeded at 60,000 cells/cm2 and incubated at 37°C for 12 hours. 
Then, phagocytosis was conducted for 4 hours at a concentration of 
1.0 × 106 cells/ml with Fluoresbrite flash red (Polysciences) with an 

 by guest on N
ovem

ber 29, 2020
http://im

m
unology.sciencem

ag.org/
D

ow
nloaded from

 

http://immunology.sciencemag.org/


Sommerfeld et al., Sci. Immunol. 4, eaax4783 (2019)     11 October 2019

S C I E N C E  I M M U N O L O G Y  |  R E S E A R C H  A R T I C L E

10 of 13

average diameter of 2.00-m particles at 2.0 × 108 particles/ml. 
Last, DAPI and Alexa Fluor 594 anti-phalloidin were used to counter 
stain macrophages for fluorescent microscopy of bead phagocytosis 
of fluorescent beads.
Cell culture
For macrophage and T cell coculture experiments, bone marrow–
derived monocytes (BMDMs) were isolated and differentiated into 
macrophage as previously described. At day 0, BMDMs were seeded 
at 60,000 cells/cm2 and incubated at 37°C for 7 days in medium 
supplemented with macrophage colony-stimulating factor (100 ng/ml) 
(PeproTech) into a 12-well insert of a transwell plate (Corning). 
Naïve CD4+ T cells were isolated from murine lymph nodes at day 4 
using a magnetic bead negative selection kit (Miltenyi). Then, 
T cells were seeded at 1 million cells/ml in 2 ml into six-well plates 
(Corning) in naïve condition supplemented with IL-2 (100 ng/ml) 
(PeproTech) or skewed toward the TH17 phenotype using a commercially 
available kit (R&D Systems). At day 7, differentiated macrophages 
were exposed to naïve and TH17 T cells at 250,000 cells/cm2 or IL-17A, 
IL-17F (PeproTech, 100 ng/ml), and control medium for 72 hours.

Fibroblasts were isolated using previously reported methods (45), 
seeded to T-75 tissue culture plates (Corning), and passaged once 
before reseeding at 50,000 cells/cm2 for 24 hours and exposed 
to IL-36 (R&D Systems) or IL-17A (PeproTech) at 100 ng/ml 
for 24 hours. Cells were lysed using RLT plus buffer (Qiagen) reagent 
for quantitative reverse transcription polymerase chain reaction 
(qRT-PCR).
qRT-PCR gene expression assay
For total and enriched mRNA, lysis was conducted on whole tissues 
using TRIzol reagent or in vitro cell culture using RLT plus buffer 
containing 1% (v/v) -mercaptoethanol. RNA purification was per-
formed with RNeasy Plus Micro and Mini kits (Qiagen). All qRT-
PCR was performed using TaqMan Gene Expression Master Mix 
(Applied Biosystems) according to the manufacturer’s instructions. 
Briefly, 2 g of enriched mRNA was used to synthesize complementary 
DNA (cDNA) using Superscript IV VILO Master Mix (Thermo 
Fisher Scientific). The cDNA concentration was set to 50 to 100 ng/well 
(in a total volume of 20 l of PCR) to match the manufacturer recom-
mendations. The qRT-PCRs were performed on the StepOne Plus 
Real-Time PCR System (Thermo Fisher Scientific), as TaqMan single-
plex assays, using the manufacturer recommended settings for 
quantitative and relative expression. For tissue samples, 2m 
was used as the reference gene and samples were normalized to 
PBS-treated controls. All qRT-PCR data were analyzed using the 
Livak method, where Ct values are calculated and reported as 
relative quantification (RQ) values calculated by 2−Ct (46). 
RQ values are represented by the geometric means, with error bars 
representing the geometric standard deviation. Low-expressing mRNA 
transcripts were preamplified using the TaqMan Pre-Amp System 
(Thermo Fisher Scientific) according to the manufacturer recom-
mendations with 14 cycles of amplification with the primer probes 
of interest (tables S4 and S5).
Single-cell encapsulation and library generation
After sorting of macrophages (CD45+F4/80hi+), single cells were 
encapsulated in water-in-oil emulsion along with gel beads coated 
with unique molecular barcodes using the 10× Genomics Chromium 
Single-Cell Platform. For single-cell RNA library generation, the 
manufacturers’ protocol was performed (10× Single Cell 3’ v2). 
Sequencing was performed using an Illumina HiSeq2500 Rapid Mode 
with 310 million reads per sample and a sequencing configuration 

of 26 × 8 × 98 (UMI × Index × Transcript read). The Cell Ranger 
pipeline software was used to align reads and generate expression 
matrices for downstream analysis.
NanoString gene expression analysis and single-cell 
data comparison
Macrophage subsets R1, R2 and F1, and F2 + FP1 were sorted ac-
cording to the gating strategy described in figs. S4 and S5 (table 
S2). After lysis in RLT plus buffer containing 2-mercaptoethanol, 
RNA was purified using the RNeasy Plus Micro Kit (Qiagen). The 
gene expression analysis for n = 3 biologically independent samples 
was conducted with the nCounter Mouse Myeloid Innate Immunity 
V2 Panel (XT-CSO-MMII2-12, NanoString Technologies). After 
quantification of RNA using a Qubit RNA fluorometric assay 
high-sensitivity kit (Thermo Fisher Scientific), 50 ng of RNA per 
sample was added to a barcoded probe set reagent and hybridized 
for 18 hours at 65°C. NanoString data were processed using the 
nSolver 4.0 software kit. The differential expression data were used 
for a direct comparison with single-cell clusters. All differentially 
expressed genes (P < 0.05 and positive fold change) for each cluster 
were taken for further analysis. Undetected genes in the single-cell 
dataset were removed. Differential expression of the sorted clusters 
was performed on the single-cell dataset using the gene set generated 
from NanoString. If the NanoString and single-cell differential 
expression both showed significance (P < 0.05) in the same direc-
tion for a given gene and cluster, the two techniques were con-
sidered in agreement. If there was significance in the opposite 
direction, the techniques were considered in disagreement. If only 
one technique found significance, it was noted as “found in one,” 
and if neither found significance, “not found” was noted for that 
gene and cluster.

Computational analysis
Sequence alignment, filtering, normalization, and scaling
Alignment was performed with STAR (47) through the Cell Ranger 
pipeline. Filtering, normalization, and scaling were performed using 
Seurat (7, 48). Cells with UMI counts for fewer than 200 genes and 
genes with expression in less than 0.1% of cells were both dropped 
from analysis. Data were normalized by Enorm = log(UMI*10,000/
UMItotal), where UMItotal is total UMI expression for a given gene. 
Scaling was performed to remove unwanted effects correlated to batch, 
total UMI count, percent of mitochondrial genes, and cell cycle. To deter-
mine cell cycle scores for use with scaling, Seurat’s CellCycleScoring 
function was used with a previously determined set of genes (49) 
correlated with G2M or S phase. Data scaling was performed by first 
fitting a linear model with the parameters to scale out as independent 
variables (batch, total UMI count, percent mitochondrial genes, 
G2M score, and S score) (fig. S21). For each gene, the residuals from 
the fit were Z-scored and used for downstream analysis. Last, principal 
components were calculated and the top 50 were selected on the basis 
of leveling of variance per principal component as determined by 
an elbow plot (fig. S22).
Clustering analysis
SC3 (50) and Seurat’s unsupervised clustering algorithms using the 
top 50 principal components were compared using silhouette co-
efficients. For each clustering algorithm, a reasonable range of 
resolution or k parameters was determined a priori. Silhouette co-
efficients were determined for each result and compared. Seurat 
was found to have consistently higher silhouette coefficients and was 
used. A resolution value was selected on the basis of a combination 
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of high silhouette coefficient and reasonable number of clusters for 
biological consideration. After clustering, a small population of 
contaminant fibroblasts was found and removed (fig. S23).
Removal of low signal clusters
Downstream analysis also found evidence of clusters that had little 
signal remaining after scaling. To attempt to quantify this, differen-
tial expression test was calculated using Seurat’s negative binomial 
statistical test with a minimum log fold change of 1. On the basis of 
these results together with quality control information such as total 
UMI count (fig. S2), we decided to remove clusters O1 to O4 from 
analysis to avoid diluting the signal from clusters with stronger 
signal. The resulting data matrix was reprocessed identically to find 
nine clusters of macrophages with strong enough signal to identify 
surface markers and suggest biological function.
Differential expression and gene set enrichment
Differential expression was calculated using edgeR’s exactTest (51). 
A list of differentially expressed genes by cluster is provided in table 
S3. Unless otherwise specified, differential expression for a specific 
cluster was determined by comparison against all other clusters. For 
heatmaps comparing expression of multiple different genes by cluster, 
gene expression values were normalized against the highest expres-
sion value for each given gene. Feature plots and violin plots for 
gene expression were generated with Seurat’s FeaturePlot and 
VlnPlot, respectively, using log-normalized expression values. Ranked 
gene lists were used to calculate gene set enrichment scores, and 
GSEA was performed as previously described using fgsea (52). 
Briefly, all genes in the analysis were ranked by P value with the 
exception of the direct comparison between R1 and R2, where genes 
were ranked by log fold change. For a given gene set, a running 
enrichment score is calculated by stepping through the ranked gene 
list and adding to the score when encountering a gene in the gene 
set or subtracting from the score otherwise. The enrichment score 
for a gene set is maximum (or minimum if negative) of the running 
enrichment score with a higher enrichment score, indicating higher 
concentration of genes in the gene set toward the beginning of the 
ranked gene list. Last, a null distribution for the gene set is calculated 
by repeatedly permuting the ranked genes and used to calculate a 
P value. Gene ontology cellular components, biological process, and 
hallmark gene sets were obtained from the Broad Institute for GSEA.
Protein network analysis
Functional network analysis of gene products in macrophage clusters 
was conducted using a databank-based query of the STRING con-
sortium (53, 54). Three-letter codes of the top 300 differentially ex-
pressed genes per cluster were mapped to the Mus musculus protein 
products. Connectivity of proteins in the network was score-ranked 
from 0 to 1, with 1 being the highest possible confidence weighed 
metadata comparison based on experimental protein-protein inter-
action evidence, PubMed text mining, and curated databases. Gephi 
network visualization tool was used to plot the cluster protein networks 
(55). Network nodes represent proteins with the size proportional 
to the number of interactions. Edges represent protein-protein 
associations, with the thickness proportional to the strength of the 
meta-evidence supporting the interaction.
Pseudotime analysis
Pseudotime analysis was performed using Slingshot (56). Precursor 
clusters were determined using differential expression and gene set 
enrichment for clusters. In particular, we found that precursor clusters 
shared gene set enrichment patterns (fig. S3). R3 was removed as an 
outlier due to highly unique gene expression. To determine genes 

associated with pseudotime progression, genes were regressed on 
pseudotime as determined by Slingshot using a general additive 
model with the gam R package. The top 10 genes by P value were 
then used to generate a heatmap, ordering cells by pseudotime. 
Z score–scaled residual expression values were used for the heatmaps.
RNA velocity analysis
RNA velocity analysis was performed as previously described (57) 
using the velocyto.py python package for annotating transcripts as 
spliced or unspliced, followed by the velocyto.R R package to perform 
velocity estimation. Briefly, transcripts are marked as either spliced 
or unspliced based on the presence or absence of intronic regions in 
the transcript. For each gene, a simple model of RNA dynamics is 
then fit to the data. Last, the RNA velocity is estimated for each cell 
by looking for over- or underrepresentation of spliced to unspliced 
ratios. RNA velocity is visualized on a UMAP plot, with vector fields 
representing the averaged velocity of nearby cells.
Analysis of publicly available datasets
Publicly available scRNAseq datasets were obtained from Gene 
expression omnibus [GSE115469 (27), GSE111664 (28), and 
GSE119352 (6)]. For each dataset, we scaled the data and then used 
SingleCellNet (26) trained on the tabula muris dataset (58) to quan-
tify similarity to known cell types. We then selected only macro-
phages and alveolar macrophages and completed analysis up through 
clustering. After determination of optimal clustering resolution, we 
applied the SingleCellNet program to quantify similarity to the bio-
material wound macrophages, training the algorithm on the terminal 
clusters R1, R2, R3, F1, and F2. This generated five similarity scores 
for each public dataset macrophage, one for each terminal cluster. 
Last, we calculated cluster level similarity scores by taking the mean 
of all cells in the cluster.

SUPPLEMENTARY MATERIALS
immunology.sciencemag.org/cgi/content/full/4/40/eaax4783/DC1
Fig. S1. Quality control of scRNAseq data.
Fig. S2. Differential expression and quality control metrics show clusters grouped on 
nondesirable traits.
Fig. S3. Precursor clusters show similarities across condition.
Fig. S4. scRNAseq reveals that canonical M1 and M2 markers do not correlate with single-cell 
clusters.
Fig. S5. Macrophage gating scheme for regenerative subsets.
Fig. S6. Macrophage gating scheme for fibrotic subsets.
Fig. S7. Murine macrophage CD9 and CD301b profiles using flow cytometry.
Fig. S8. Differential gene expression heatmap for RP3 and R2.
Fig. S9. Cell composition of clusters by experimental condition.
Fig. S10. Expression of inflammatory genes in fibrotic cluster F2.
Fig. S11. Quantification of expression levels of CD11c and CD206.
Fig. S12. RNA velocity analysis.
Fig. S13. Regenerative subsets R1 and R2 phagocytosis assay.
Fig. S14. Immunofluorescence microscopy of F4/80+CD301b+ macrophages.
Fig. S15. Cluster R3 expresses tissue-specific genes.
Fig. S16. Expression of inflammatory genes in fibrotic cluster F2.
Fig. S17. Immunofluorescence microscopy on F4/80+CD9+ macrophages.
Fig. S18. In vitro TH17 dependence of Il36 expression in macrophages and IL-36 induction of 
fibrosis phenotypes in cultured fibroblasts.
Fig. S19. Analysis pipeline for publicly available datasets.
Fig. S20. Scheme to generate for tSNE projection for virtual aggregate flow cytometry data.
Fig. S21. Scaling metric for the scRNAseq raw data.
Fig. S22. Variance by principle component.
Fig. S23. Expression of fibroblast signature genes in small contaminant cluster.
Table S1. Quality control metrics for 10× scRNAseq.
Table S2. Macrophage FACS panel.
Table S3. Macrophage subtype panel.
Table S4. Murine TaqMan gene expression assay probes. 
Table S5. Human TaqMan gene expression assay probes.
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Table S6. Sorted cell populations for NanoString Gene Expression Profiling.
Table S7. Differentially expressed genes for scRNAseq clusters.
View/request a protocol for this paper from Bio-protocol.

REFERENCES AND NOTES
	 1.	 P. J. Murray, T. A. Wynn, Protective and pathogenic functions of macrophage subsets. 

Nat. Rev. Immunol. 11, 723–737 (2011).
	 2.	 A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, M. Locati, The chemokine system 

in diverse forms of macrophage activation and polarization. Trends Immunol. 25,  
677–686 (2004).

	 3.	 C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman, A. M. Hill, M-1/M-2 macrophages 
and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

	 4.	 D. M. Mosser, J. P. Edwards, Exploring the full spectrum of macrophage activation.  
Nat. Rev. Immunol. 8, 958–969 (2008).

	 5.	 P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy, S. Goerdt, S. Gordon, 
J. A. Hamilton, L. B. Ivashkiv, T. Lawrence, M. Locati, A. Mantovani, F. O. Martinez, 
J.-L. Mege, D. M. Mosser, G. Natoli, J. P. Saeij, J. L. Schultze, K. A. Shirey, A. Sica, J. Suttles, 
I. Udalova, J. A. van Ginderachter, S. N. Vogel, T. A. Wynn, Macrophage activation 
and polarization: Nomenclature and experimental guidelines. Immunity 41,  
14–20 (2014).

	 6.	 M. M. Gubin, E. Esaulova, J. P. Ward, O. N. Malkova, D. Runci, P. Wong, T. Noguchi, 
C. D. Arthur, W. Meng, E. Alspach, R. F. V. Medrano, C. Fronick, M. Fehlings, E. W. Newell, 
R. S. Fulton, K. C. F. Sheehan, S. T. Oh, R. D. Schreiber, M. N. Artyomov, High-dimensional 
analysis delineates myeloid and lymphoid compartment remodeling during successful 
immune-checkpoint cancer therapy. Cell 175, 1443 (2018).

	 7.	 A.-C. Villani, R. Satija, G. Reynolds, S. Sarkizova, K. Shekhar, J. Fletcher, M. Griesbeck, 
A. Butler, S. Zheng, S. Lazo, L. Jardine, D. Dixon, E. Stephenson, E. Nilsson, I. Grundberg, 
D. McDonald, A. Filby, W. Li, P. L. De Jager, O. Rozenblatt-Rosen, A. A. Lane, M. Haniffa, 
A. Regev, N. Hacohen, Single-cell RNA-seq reveals new types of human blood dendritic 
cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

	 8.	 S. F. Badylak, J. E. Valentin, A. K. Ravindra, G. P. McCabe, A. M. Stewart-Akers, Macrophage 
phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14, 
1835–1842 (2008).

	 9.	 K. Sadtler, K. Estrellas, B. W. Allen, M. T. Wolf, H. Fan, A. J. Tam, C. H. Patel, B. S. Luber, 
H. Wang, K. R. Wagner, J. D. Powell, F. Housseau, D. M. Pardoll, J. H. Elisseeff, Developing 
a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. 
Science 352, 366–370 (2016).

	 10.	 J. M. Anderson, A. Rodriguez, D. T. Chang, Foreign body reaction to biomaterials.  
Semin. Immunol. 20, 86–100 (2008).

	 11.	 B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, Biomaterials Science: An Introduction 
to Materials in Medicine (Elsevier, 2004).

	 12.	 L. Chung, D. M. Jr, A. Lebid, A. Mageau, G. D. Rosson, X. Wu, M. T. Wolf, A. Tam, 
I. Vanderzee, X. Wang, J. I. Andorko, R. Narain, K. Sadtler, H. Fan, D. Čiháková, C. J. Le Saux, 
F. Housseau, D. M. Pardoll, J. H. Elisseeff, Interleukin-17 and senescence regulate the 
foreign body response. bioRxiv 583757 [Preprint]. 11 April 2019. https://doi.
org/10.1101/583757.

	 13.	 B. M. Sicari, J. P. Rubin, C. L. Dearth, M. T. Wolf, F. Ambrosio, M. Boninger, N. J. Turner, 
D. J. Weber, T. W. Simpson, A. Wyse, E. H. P. Brown, J. L. Dziki, L. E. Fisher,  
S. Brown, S. F. Badylak, An acellular biologic scaffold promotes skeletal muscle 
formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 6, 234ra58 
(2014).

	 14.	 H. Kimmel, M. Rahn, T. W. Gilbert, The clinical effectiveness in wound healing 
with extracellular matrix derived from porcine urinary bladder matrix: A case series 
on severe chronic wounds. J. Am. Col. Certif. Wound Spec. 2, 55–59 (2010).

	 15.	 J. Zografakis, G. Johnston, J. Haas, L. Berbiglia, T. Bedford, J. Spear, A. Dan, M. Pozsgay, 
Urinary bladder matrix reinforcement for laparoscopic hiatal hernia repair. JSLS 22, 
e2017.00060 (2018).

	 16.	 J. C. Doloff, O. Veiseh, A. J. Vegas, H. H. Tam, S. Farah, M. Ma, J. Li, A. Bader, A. Chiu, 
A. Sadraei, S. Aresta-Dasilva, M. Griffin, S. Jhunjhunwala, M. Webber, S. Siebert, K. Tang, 
M. Chen, E. Langan, N. Dholokia, R. Thakrar, M. Qi, J. Oberholzer, D. L. Greiner, R. Langer, 
D. G. Anderson, Colony stimulating factor-1 receptor is a central component 
of the foreign body response to biomaterial implants in rodents and non-human 
primates. Nat. Mater. 16, 671–680 (2017).

	 17.	 E. L. Gautier, T. Shay, J. Miller, M. Greter, C. Jakubzick, S. Ivanov, J. Helft, A. Chow, 
K. G. Elpek, S. Gordonov, A. R. Mazloom, A. Ma’ayan, W.-J. Chua, T. H. Hansen, S. J. Turley, 
M. Merad, G. J. Randolph; Immunological Genome Consortium, Gene-expression profiles 
and transcriptional regulatory pathways that underlie the identity and diversity of mouse 
tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

	 18.	 M. T. Wolf, S. Ganguly, T. L. Wang, C. W. Anderson, K. Sadtler, R. Narain, C. Cherry, 
A. J. Parrillo, B. V. Park, G. Wang, F. Pan, S. Sukumar, D. M. Pardoll, J. H. Elisseeff, A biologic 

scaffold–associated type 2 immune microenvironment inhibits tumor formation 
and synergizes with checkpoint immunotherapy. Sci. Transl. Med. 11, eaat7973 (2019).

	 19.	 K. Sadtler, M. T. Wolf, S. Ganguly, C. A. Moad, L. Chung, S. Majumdar, F. Housseau, 
D. M. Pardoll, J. H. Elisseeff, Divergent immune responses to synthetic and biological 
scaffolds. Biomaterials 192, 405–415 (2019).

	 20.	 C. J. Workman, Y. Wang, K. C. El Kasmi, D. M. Pardoll, P. J. Murray, C. G. Drake, 
D. A. A. Vignali, LAG-3 regulates plasmacytoid dendritic cell homeostasis.  
J. Immunol. 182, 1885–1891 (2009).

	 21.	 Y. Carrier, H.-L. Ma, H. E. Ramon, L. Napierata, C. Small, M. O’Toole, D. A. Young, 
L. A. Fouser, C. Nickerson-Nutter, M. Collins, K. Dunussi-Joannopoulos, Q. G. Medley, 
Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: 
Implications in psoriasis pathogenesis. J. Invest. Dermatol. 131, 2428–2437 (2011).

	 22.	 L. J. Celada, J. A. Kropski, J. D. Herazo-Maya, W. Luo, A. Creecy, A. T. Abad, O. S. Chioma, 
G. Lee, N. E. Hassell, G. I. Shaginurova, Y. Wang, J. E. Johnson, A. Kerrigan, W. R. Mason, 
R. P. Baughman, G. D. Ayers, G. R. Bernard, D. A. Culver, C. G. Montgomery, T. M. Maher, 
P. L. Molyneaux, I. Noth, S. E. Mutsaers, C. M. Prele, R. Stokes Peebles Jr., D. C. Newcomb, 
N. Kaminski, T. S. Blackwell, L. van Kaer, W. P. Drake, PD-1 up-regulation on CD4+ T cells 
promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-1 production. 
Sci. Transl. Med. 10, eaar8356 (2018).

	 23.	 M. S. Wilson, S. K. Madala, T. R. Ramalingam, B. R. Gochuico, I. O. Rosas, 
 A. W. Cheever, T. A. Wynn, Bleomycin and IL-1–mediated pulmonary fibrosis is  
IL-17A dependent. J. Exp. Med. 207, 535–552 (2010).

	 24.	 L. Wu, S. F. Ong, M. V. Talor, J. G. Barin, G. C. Baldeviano, D. A. Kass, D. Bedja, H. Zhang, 
A. Sheikh, J. B. Margolick, Y. Iwakura, N. R. Rose, D. Čiháková, Cardiac fibroblasts mediate 
IL-17A–driven inflammatory dilated cardiomyopathy. J. Exp. Med. 211,  
1449–1464 (2014).

	 25.	 A. Müller, A. Hennig, S. Lorscheid, P. Grondona, K. Schulze-Osthoff, 
 S. Hailfinger, D. Kramer, IB is a key transcriptional regulator of IL-36–driven 
psoriasis-related gene expression in keratinocytes. Proc. Natl. Acad. Sci. U.S.A. 115, 
10088–10093 (2018).

	 26.	 Y. Tan, P. Cahan, SingleCellNet: A computational tool to classify single cell RNA-Seq data 
across platforms and across species. Cell Syst. 9, 207–213.e2 (2019).

	27.	 S. A. MacParland, J. C. Liu, X.-Z. Ma, B. T. Innes, A. M. Bartczak, B. K. Gage, J. Manuel, 
N. Khuu, J. Echeverri, I. Linares, R. Gupta, M. L. Cheng, L. Y. Liu, D. Camat, 
S. W. Chung, R. K. Seliga, Z. Shao, E. Lee, S. Ogawa, M. Ogawa, M. D. Wilson, J. E. Fish, 
M. Selzner, A. Ghanekar, D. Grant, P. Greig, G. Sapisochin, N. Selzner, N. Winegarden, 
O. Adeyi, G. Keller, G. D. Bader, I. D. McGilvray, Single cell RNA sequencing of human 
liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 
(2018).

	 28.	 D. Aran, A. P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, S. Chak, R. P. Naikawadi, P. J. Wolters, 
A. R. Abate, A. J. Butte, M. Bhattacharya, Reference-based analysis of lung single-cell 
sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20,  
163–172 (2019).

	 29.	 C. Blériot, T. Dupuis, G. Jouvion, G. Eberl, O. Disson, M. Lecuit, Liver-resident macrophage 
necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue 
repair during bacterial infection. Immunity 42, 145–158 (2015).

	 30.	 M. F. Pustjens, S. C. Mastbergen, C. Steen-Louws, J. A. van Roon, E. Hack, F. P. Lafeber, 
IL4-10 synerkine induces direct and indirect structural cartilage repair in osteoarthritis. 
Osteoarthr. Cartil. 24, S532 (2016).

	 31.	 K. Sadtler, B. W. Allen, K. Estrellas, F. Housseau, D. M. Pardoll, J. H. Elisseeff, The scaffold 
immune microenvironment: Biomaterial-mediated immune polarization in traumatic 
and nontraumatic applications. Tissue Eng. Part A 23, 1044–1053 (2017).

	 32.	 J. E. Heredia, L. Mukundan, F. M. Chen, A. A. Mueller, R. C. Deo, R. M. Locksley, T. A. Rando, 
A. Chawla, Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate 
muscle regeneration. Cell 153, 376–388 (2013).

	 33.	 J.-C. Rodríguez-Prados, P. G. Través, J. Cuenca, D. Rico, J. Aragonés, P. Martín-Sanz, 
M. Cascante, L. Boscá, Substrate fate in activated macrophages: A comparison between 
innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).

	 34.	 J. I. Odegaard, A. Chawla, Alternative macrophage activation and metabolism.  
Annu. Rev. Pathol. 6, 275–297 (2011).

	 35.	 F. Wang, S. Zhang, I. Vuckovic, R. Jeon, A. Lerman, C. D. Folmes, P. P. Dzeja, J. Herrmann, 
Glycolytic stimulation is not a requirement for M2 macrophage differentiation.  
Cell Metab. 28, 463–475.e4 (2018).

	 36.	 G. Fiorino, P. D. Omodei, Psoriasis and inflammatory bowel disease: Two sides of the same 
coin? J. Crohns Colitis 9, 697–698 (2015).

	 37.	 S. Kagami, H. L. Rizzo, J. J. Lee, Y. Koguchi, A. Blauvelt, Circulating Th17, Th22, and Th1 
cells are increased in psoriasis. J. Invest. Dermatol. 130, 1373–1383 (2010).

	 38.	 J. F. Zambrano-Zaragoza, E. J. Romo-Martínez, M. Durán-Avelar, N. García-Magallanes, 
N. Vibanco-Pérez, Th17 cells in autoimmune and infectious diseases. Int. J. Inflam. 2014, 
651503 (2014).

	 39.	 M. T. Mizwicki, M. Fiala, L. Magpantay, N. Aziz, J. Sayre, G. Liu, A. Siani, D. Chan, 
O. Martinez-Maza, M. Chattopadhyay, A. La Cava, Tocilizumab attenuates inflammation 

 by guest on N
ovem

ber 29, 2020
http://im

m
unology.sciencem

ag.org/
D

ow
nloaded from

 

https://en.bio-protocol.org/rap.aspx?eid=10.1126/sciimmunol.aax4783
http://immunology.sciencemag.org/


Sommerfeld et al., Sci. Immunol. 4, eaax4783 (2019)     11 October 2019

S C I E N C E  I M M U N O L O G Y  |  R E S E A R C H  A R T I C L E

13 of 13

in ALS patients through inhibition of IL6 receptor signaling. Am. J. Neurodegener. Dis. 1, 
305–315 (2012).

	 40.	 X. Wang, X. Zhao, C. Feng, A. Weinstein, R. Xia, W. Wen, Q. Lv, S. Zuo, P. Tang, X. Yang, 
X. Chen, H. Wang, S. Zang, L. Stollings, T. L. Denning, J. Jiang, J. Fan, G. Zhang, X. Zhang, 
Y. Zhu, W. Storkus, B. Lu, IL-36 transforms the tumor microenvironment and promotes 
type 1 lymphocyte-mediated antitumor immune responses. Cancer Cell 28,  
296–306 (2015).

	 41.	 W. Seo, H. S. Eun, S. Y. Kim, H.-S. Yi, Y.-S. Lee, S.-H. Park, M.-J. Jang, E. Jo, S. C. Kim, 
Y.-M. Han, K.-G. Park, W.-I. Jeong, Exosome-mediated activation of toll-like receptor 3 
in stellate cells stimulates interleukin-17 production by  T cells in liver fibrosis. 
Hepatology 64, 616–631 (2016).

	 42.	 T. A. Wynn, K. M. Vannella, Macrophages in tissue repair, regeneration, and fibrosis. 
Immunity 44, 450–462 (2016).

	 43.	 J. W. Ford, D. W. McVicar, TREM and TREM-like receptors in inflammation and disease. 
Curr. Opin. Immunol. 21, 38–46 (2009).

	 44.	 M. Schenk, A. Bouchon, F. Seibold, C. Mueller, TREM-1–expressing intestinal 
macrophages crucially amplify chronic inflammation in experimental colitis 
and inflammatory bowel diseases. J. Clin. Invest. 117, 3097–3106 (2007).

	 45.	 M. Khan, S. Gasser, Generating primary fibroblast cultures from mouse ear and tail 
tissues. J. Vis. Exp. , e53565 (2016).

	 46.	 K. J. Livak, T. D. Schmittgen, Analysis of relative gene expression data using real-time 
quantitative PCR and the 2−C

T method. Methods 25, 402–408 (2001).
	 47.	 A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, 

T. R. Gingeras, STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29,  
15–21 (2013).

	 48.	 A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Integrating single-cell 
transcriptomic data across different conditions, technologies, and species.  
Nat. Biotechnol. 36, 411–420 (2018).

	 49.	 M. S. Kowalczyk, I. Tirosh, D. Heckl, T. N. Rao, A. Dixit, B. J. Haas, R. K. Schneider, 
A. J. Wagers, B. L. Ebert, A. Regev, Single-cell RNA-seq reveals changes in cell cycle 
and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 
1860–1872 (2015).

	 50.	 V. Y. Kiselev, K. Kirschner, M. T. Schaub, T. Andrews, A. Yiu, T. Chandra, K. N. Natarajan, 
W. Reik, M. Barahona, A. R. Green, M. Hemberg, SC3: Consensus clustering of single-cell 
RNA-seq data. Nat. Methods 14, 483–486 (2017).

	 51.	 M. D. Robinson, D. J. McCarthy, G. K. Smyth, edgeR: A Bioconductor package 
for differential expression analysis of digital gene expression data. Bioinformatics 26, 
139–140 (2009).

	 52.	 A. Sergushichev, An algorithm for fast preranked gene set enrichment analysis using 
cumulative statistic calculation. bioRxiv 060012 [Preprint]. 20 June 2016. https://doi.
org/10.1101/060012.

	 53.	 D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-Cepas, 
M. Simonovic, A. Roth, A. Santos, K. P. Tsafou, M. Kuhn, P. Bork, L. J. Jensen, C. von Mering, 
STRING v10: Protein–protein interaction networks, integrated over the tree of life.  
Nucleic Acids Res. 43, D447–D452 (2014).

	 54.	 C. von Mering, L. J. Jensen, B. Snel, S. D. Hooper, M. Krupp, M. Foglierini, N. Jouffre, 
M. A. Huynen, P. Bork, STRING: Known and predicted protein–protein associations, 

integrated and transferred across organisms. Nucleic Acids Res. 33,  
D433–D437 (2005).

	 55.	 M. Bastian, S. Heymann, M. Jacomy, Gephi: An open source software for exploring and 
manipulating networks, Third International AAAI Conference on Web and Social Media, 
San Jose, CA, May 17 to 20; https://www.aaai.org/ocs/index.php/ICWSM/09/paper/
view/154/1009.

	 56.	 K. Street, D. Risso, R. B. Fletcher, D. Das, J. Ngai, N. Yosef, E. Purdom, S. Dudoit, Slingshot: 
Cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 
477 (2018).

	 57.	 G. La Manno, R. Soldatov, A. Zeisel, E. Braun, H. Hochgerner, V. Petukhov, K. Lidschreiber, 
M. E. Kastriti, P. Lönnerberg, A. Furlan, J. Fan, L. E. Borm, Z. Liu, D. van Bruggen, J. Guo, 
X. He, R. Barker, E. Sundström, G. Castelo-Branco, P. Cramer, I. Adameyko, S. Linnarsson, 
P. V. Kharchenko, RNA velocity of single cells. Nature 560, 494–498 (2018).

	 58.	 Tabula Muris Consortium; Overall coordination; Logistical coordination; Organ collection 
and processing; Library preparation and sequencing; Computational data analysis;  
Cell type annotation; Writing group; Supplemental text writing group; Principal 
investigators, Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. 
Nature 562, 367–372 (2018).

Acknowledgments: We would like to thank the Cindy Sears laboratory for providing the 
original breeding mice strain for transgenic Il17ra−/− and Il17a−/− and the Sidney Kimmel 
Comprehensive Cancer Center (SKCCC) Immune Monitoring Core for NanoString studies. 
Funding: We acknowledge funding from the Morton Goldberg Chair, the Bloomberg~Kimmel 
Institute for Cancer Immunotherapy, and ACell Inc. Author contributions: S.D.S., C.C., and 
J.H.E. conceptualized and drafted figures and the manuscript. S.D.S., C.C., J.H.E., D.M.P., P.C., 
and F.H. contributed to experimental design and interpretation of results. S.D.S., C.C., L.C., 
D.R.M., R.M.S., A.T., J.E.S., and J.M.T. conducted experimental procedures and analyzed data. 
All authors participated in editing and revising the manuscript text and figures. Competing 
interests: J.H.E. is an inventor on intellectual property related to biological scaffolds and 
inhibiting fibrosis. J.H.E. is a consultant to ACell and a founder of Aegeria. D.M.P. is an inventor 
on intellectual property related to inhibiting fibrosis and immunotherapies for cancer. D.M.P. 
is a consultant and founder to multiple immunotherapy companies. Data and materials 
availability: Single cell RNA sequencing data is available from the Gene Expression Omnibus 
under accession number GSE138027. All other needed to support the conclusions in the 
paper are available in the paper and/or the Supplementary Materials. Requests regarding 
protocols and resources should be directed to and will be fulfilled by the lead contact J.H.E. 
(jhe@jhu.edu).

Submitted 27 March 2019
Accepted 5 September 2019
Published 11 October 2019
10.1126/sciimmunol.aax4783

Citation: S. D. Sommerfeld, C. Cherry, R. M. Schwab, L. Chung, D. R. Maestas Jr., P. Laffont, 
J. E. Stein, A. Tam, S. Ganguly, F. Housseau, J. M. Taube, D. M. Pardoll, P. Cahan, J. H. Elisseeff, 
Interleukin-36–producing macrophages drive IL-17–mediated fibrosis. Sci. Immunol. 4, 
eaax4783 (2019).

 by guest on N
ovem

ber 29, 2020
http://im

m
unology.sciencem

ag.org/
D

ow
nloaded from

 

http://immunology.sciencemag.org/


mediated fibrosis−producing macrophages drive IL-17−γInterleukin-36

ElisseeffStein, Ada Tam, Sudipto Ganguly, Franck Housseau, Janis M. Taube, Drew M. Pardoll, Patrick Cahan and Jennifer H. 
Sven D. Sommerfeld, Christopher Cherry, Remi M. Schwab, Liam Chung, David R. Maestas , Jr., Philippe Laffont, Julie E.

DOI: 10.1126/sciimmunol.aax4783
First published 11 October 2019

, eaax4783.4Sci. Immunol. 

producing cells in fibrosis and in other settings. −γ and IL-36−IL-17
 producing macrophages during fibrosis. Further studies are needed to understand the functional relationship between

−γ IL-36+deficient mice, they report IL-17 to be essential for the generation of CD9−evaluating wound healing in IL-17
 driven fibrosis. By−producing macrophages that participate in IL-17−)γ (IL-36γ interleukin-36+identified a subset of CD9

regeneration. They have defined populations of macrophages that are involved in both processes, and they have 
. have characterized macrophages involved in both fibrosis andet alsingle-cell RNA sequencing, Sommerfeld 

biomaterial environments, one that promotes regeneration and another that promotes fibrosis in conjunction with 
Biological scaffolds that mimic tissue microenvironments can be used to model wound healing. Using two distinct
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